90 TRANSCRIPTION OF USP9Y AND ZFY IN DEVELOPING AND ARRESTED BOVINE EMBRYOS IN VITRO

2013 ◽  
Vol 25 (1) ◽  
pp. 193
Author(s):  
J. Caudle ◽  
C. K. Hamilton ◽  
F. A. Ashkar ◽  
W. A. King

Sexual dimorphisms such as differences in growth rate and metabolism have been observed in the early embryo, suggesting that sex chromosome-linked gene expression may play an active role in early embryo development. Furthermore, in vitro sex ratios are often skewed toward males, indicating that Y-linked genes may benefit development. While little attention has been paid to the Y chromosome, expression of some Y-linked genes such as SRY and ZFY has been identified in the early embryo, and only a few studies have systematically examined early stages. Identification of transcripts of Y-linked genes in the early embryo may provide insights into male development and provide markers of embryonic genome activation in male embryos. The objectives of this study were i) to examine the timing of transcription of 2 Y chromosome-linked genes involved with sperm production and male development, ubiquitin-specific peptidase 9 (USP9Y) and zinc finger protein (ZFY), in in vitro-produced bovine embryos from the 2-cell stage to the blastocyst stage and ii) to determine if USP9Y and ZFY transcripts are present in in vitro-produced embryos arrested at the 2- to 8-cell stages. To examine the chronology of transcription of these genes, pools of 30 embryos for each developmental stage, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst, were produced by bovine standard in vitro embryo production (Ashkar et al. 2010 Hum. Reprod. 252, 334–344) using semen from a single bull. Pools of 30 were used to balance sex ratios and to account for naturally arresting embryos. Embryos for each developmental stage were harvested and snap frozen. Total RNA was extracted from each pool, reverse transcribed to cDNA and by using PCR, and transcripts of USP9Y and ZFY were detected as positive or negative. In addition pools of 30 embryos arrested at the 2- to 8-cell stage harvested 7 days after IVF were processed and analysed in the same way to determine if transcripts from the Y chromosomes are present in developmentally arrested embryos. Transcripts of USP9Y and ZFY were detected in the pooled embryos from the 8-cell stage through to the blastocyst stage, but none were detected in the 2-cell or 4-cell pools. Transcripts of ZFY were detected in the arrested 2- to 8-cell embryo pool, but transcripts of USP9Y were not detected. Given that these Y genes begin expression at the 8-cell stage, coincident with embryonic genome activation, it was concluded that these genes may be important for early male embryo development. Furthermore, the results suggest that arrested embryos that have stopped cleaving before the major activation of the embryonic genome are still capable of transcribing at least some of these genes. The absence of USP9Y transcripts in the arrested embryos suggests that it may be important for early male embryo development. Funding was provided by NSERC, the CRC program, and the OVC scholarship program.

2006 ◽  
Vol 18 (2) ◽  
pp. 168 ◽  
Author(s):  
M. Bertolini ◽  
L. R. Bertolini ◽  
S. G. Petkov ◽  
K. R. Madden ◽  
J. D. Murray ◽  
...  

The RNA interference (RNAi) technology is a powerful tool for studies in functional genomics. The aim of this study was to evaluate the effects of a cationic lipid-based small interfering RNA (siRNA) and/or DNA delivery to 1-cell-stage bovine embryos on survival to the blastocyst stage. In vitro-produced (IVP) embryos were generated according to Bertolini et al. 2002 (Theriogenology 58, 973), and cloned embryos were produced by the handmade cloning technique (Vajta et al. 2003 Biol. Reprod. 68, 571) using green fluorescent protein (GFP)-expressing fibroblast cells as nuclear donors. Lipofections were performed on zona-free 1-cell-stage IVP embryos at 24–28 h post-fertilization by exposure to 1% (v/v) Lipofectamine 2000 (Invitrogen Co., CA, USA), 0.002% (w/v) GFP plasmid (pEFGP-N1, Clontech Laboratories, CA, USA) and/or various doses of siRNA GFP-specific siRNA oligonucleotide (Invitrogen) or DNA methyltransferase 1 (Dnmt1)-specific siRNA fragments for 60 min at 39°C, according to 5 treatment groups: (1) zona-intact IVP embryos (controls), (2) zona-free control embryos (controls for embryo development after zona removal), (3) embryos treated with GFP + GFP-siRNA at 0, 50, 100, 200, 400, or 800 nm, (4) embryos treated with Dnmt1-siRNA at 0, 50, 100, 250, or 500 nm, and (5) cloned embryos (positive controls for GFP expression). After treatment, embryos were in vitro-cultured in a WOW culture system (Vajta et al. 2000 Mol. Reprod. Dev. 55, 256) for 7 days. Cleavage and developmental rates to at least 8-cell and to blastocyst stages were assessed at 48, 96, and 168 h post-fertilization (hpf), respectively. Data were analyzed by the chi-square test. Cleavage rates in embryos treated with higher doses of siRNA were lower than in all other groups (Table 1). Embryo survival to at least 8-cell stage at 48 h, based on cleavage, was similar among all treatments (data not shown), but survival to blastocyst stage was affected by higher doses of GFP- or Dnmt1-siRNA (Table 1). After a qualitative assessment by fluorescence microscopy at 168 hpf, 40 to 63% of GFP-transfected blastocysts showed various levels of fluorescence, irrespective of the siRNA treatments. Fragments of siRNA are known to be short-lived in cultured cells, although we are still uncertain of their behavior and effects in early bovine embryos. We are currently analyzing the effectiveness of the siRNA transfection in the early IVP and clone embryo. In conclusion, liposome transfection of 1-cell-stage embryos did not affect survival and development to the blastocyst stage. However, survival followed an siRNA dose-response effect, with doses higher than 400 nm appearing to be detrimental to embryo development, with a developmental arrest at or close to the embryonic genome activation period. Table 1. Developmental rate of bovine embryos following lipid-based transfection at the 1-cell-stage


Reproduction ◽  
2009 ◽  
Vol 137 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Christian Vigneault ◽  
Serge McGraw ◽  
Marc-Andre Sirard

Cleavage-stage bovine embryos are transcriptionally quiescent until they reach the 8- to 16-cell stage, and thus rely on the reserves provided by the stored maternal mRNAs and proteins found in the oocytes to achieve their first cell divisions. The objective of this study was to characterize the expression and localization of the transcriptional and translational regulators, Y box binding protein 2 (YBX2), TATA box-binding protein (TBP), and activating transcription factor 2 (ATF2), during bovine early embryo development. Germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, as well as 2-, 4-, 8-, 16-cell-stage embryos, morula, and blastocysts, producedin vitrowere analyzed for temporal and spatial protein expression. Using Q-PCR,ATF2mRNA expression was shown to remain constant from the GV-stage oocyte to the four-cell embryo, and then decreased through to the blastocyst stage. By contrast, the protein levels of ATF2 remained constant throughout embryo development and were found in both the cytoplasm and the nucleus. Both TBP and YBX2 showed opposite protein expression patterns, as YBX2 protein levels decreased throughout development, while TBP levels increased through to the blastocyst stage. Immunolocalization studies revealed that TBP protein was localized in the nucleus of 8- to 16-cell-stage embryos, whereas the translational regulator YBX2 was exclusively cytoplasmic and disappeared from the 16-cell stage onward. This study shows that YBX2, TBP, and ATF2 are differentially regulated through embryo development, and provides insight into the molecular events occurring during the activation of the bovine genome during embryo developmentin vitro.


Reproduction ◽  
2017 ◽  
Vol 154 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Antonio D Barrera ◽  
Elina V García ◽  
Meriem Hamdi ◽  
María J Sánchez-Calabuig ◽  
Ángela P López-Cardona ◽  
...  

During the transit through the oviduct, the early embryo initiates an extensive DNA methylation reprogramming of its genome. Given that these epigenetic modifications are susceptible to environmental factors, components present in the oviductal milieu could affect the DNA methylation marks of the developing embryo. The aim of this study was to examine if culture of bovine embryos with oviductal fluid (OF) can induce DNA methylation changes at specific genomic regions in the resulting blastocysts. In vitro produced zygotes were cultured in medium with 3 mg/mL bovine serum albumin (BSA) or 1.25% OF added at the one- to 16-cell stage (OF1–16), one- to 8-cell stage (OF1–8) or 8- to 16-cell stage (OF8–16), and then were cultured until Day 8 in medium with 3 mg/mL BSA. Genomic regions in four developmentally important genes (MTERF2, ABCA7, OLFM1, GMDS) and within LINE-1 retrotransposons were selected for methylation analysis by bisulfite sequencing on Day 7–8 blastocysts. Blastocysts derived from OF1–16 group showed lower CpG methylation levels in MTERF2 and ABCA7 compared with the BSA group. However, CpG sites within MTERF2, ABCA7 and OLFM1 showed higher methylation levels in groups OF1–8 and OF8–16 than in OF1–16. For LINE-1 elements, higher CpG methylation levels were observed in blastocysts from the OF1–16 group than in the other experimental groups. In correlation with the methylation changes observed, mRNA expression level of MTERF2 was increased, while LINE-1 showed a decreased expression in blastocysts from OF1–16 group. Our results suggest that embryos show transient sensitivity to OF at early stages, which is reflected by specific methylation changes at the blastocyst stage.


Reproduction ◽  
2012 ◽  
Vol 144 (3) ◽  
pp. 349-359 ◽  
Author(s):  
Tereza Toralová ◽  
Veronika Benešová ◽  
Kateřina Vodičková Kepková ◽  
Petr Vodička ◽  
Andrej Šušor ◽  
...  

This study was conducted to investigate the effect of silencing nucleophosmin in the development of in vitro-produced bovine embryos. Nucleophosmin is an abundant multifunctional nucleolar phosphoprotein that participates, for example, in ribosome biogenesis or centrosome duplication control. We showed that although the transcription of embryonic nucleophosmin started already at late eight-cell stage, maternal protein was stored throughout the whole preimplantation development and was sufficient for the progression to the blastocyst stage. At the beginning of embryogenesis, translation occurs on maternally derived ribosomes, the functionally active nucleoli emerge during the fourth cell cycle in bovines. We found that nucleophosmin localisation reflected the nucleolar formation during bovine preimplantation development. The protein was detectable from the beginning of embryonic development. Before embryonic genome activation, it was dispersed throughout the nucleoplasm. The typical nucleolar localisation emerged with the formation of active nucleoli. At the blastocyst stage, nucleophosmin tended to localise especially to the trophectoderm. To see for how long is maternal nucleophosmin preserved, we silenced the nucleophosmin mRNA using RNA interference approach. Although a large portion of nucleophosmin was degraded in embryos with silenced nucleophosmin mRNA, an amount sufficient for normal development was preserved and we detected only a temporal delay in nucleophosmin relocalisation to nucleoli. Moreover, we observed no defects in nuclear shape or cytoskeleton previously found in somatic cells and only a non-significant decrease in embryonic developmental competence. Thus, our results show that the preserved amount of maternal nucleophosmin is sufficient for preimplantation development of bovine embryo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi-Qiang Du ◽  
Hao Liang ◽  
Xiao-Man Liu ◽  
Yun-Hua Liu ◽  
Chonglong Wang ◽  
...  

AbstractSuccessful early embryo development requires the correct reprogramming and configuration of gene networks by the timely and faithful execution of zygotic genome activation (ZGA). However, the regulatory principle of molecular elements and circuits fundamental to embryo development remains largely obscure. Here, we profiled the transcriptomes of single zygotes and blastomeres, obtained from in vitro fertilized (IVF) or parthenogenetically activated (PA) porcine early embryos (1- to 8-cell), focusing on the gene expression dynamics and regulatory networks associated with maternal-to-zygote transition (MZT) (mainly maternal RNA clearance and ZGA). We found that minor and major ZGAs occur at 1-cell and 4-cell stages for both IVF and PA embryos, respectively. Maternal RNAs gradually decay from 1- to 8-cell embryos. Top abundantly expressed genes (CDV3, PCNA, CDR1, YWHAE, DNMT1, IGF2BP3, ARMC1, BTG4, UHRF2 and gametocyte-specific factor 1-like) in both IVF and PA early embryos identified are of vital roles for embryo development. Differentially expressed genes within IVF groups are different from that within PA groups, indicating bi-parental and maternal-only embryos have specific sets of mRNAs distinctly decayed and activated. Pathways enriched from DEGs showed that RNA associated pathways (RNA binding, processing, transport and degradation) could be important. Moreover, mitochondrial RNAs are found to be actively transcribed, showing dynamic expression patterns, and for DNA/H3K4 methylation and transcription factors as well. Taken together, our findings provide an important resource to investigate further the epigenetic and genome regulation of MZT events in early embryos of pigs.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 113-122 ◽  
Author(s):  
E. Christians ◽  
E. Campion ◽  
E.M. Thompson ◽  
J.P. Renard

Activation of the mouse embryonic genome at the 2-cell stage is characterized by the synthesis of several alpha-amanitin-sensitive polypeptides, some of which belong to the multigenic hsp 70 family. In the present work we show that a member of this family, the HSP 70.1 gene, is highly transcribed at the onset of zygotic genome activation. Transcription of this gene began as early as the 1-cell stage. Expression of the gene continued through the early 2-cell stage but was repressed before the completion of the second round of DNA replication. During this period we observed that the level of transcription was modulated by in vitro culture conditions. The coincidence of repression of HSP70.1 transcription with the second round of DNA replication was not found for other transcription-dependent polypeptides synthesized at the 2-cell stage.


2005 ◽  
Vol 17 (2) ◽  
pp. 219 ◽  
Author(s):  
C.E. Ferguson ◽  
T.R. Davidson ◽  
M.R.B. Mello ◽  
A.S. Lima ◽  
D.J. Kesler ◽  
...  

There has been much debate over a direct role for progesterone (P4) in early bovine embryo development. While previous attempts to supplement bovine embryos in vitro with P4 produced results that vary and are often contradictory, this may be a response of administering P4 at inappropriate times. Therefore, the objective of these experiments was to determine if P4 could exert a direct effect on developing IVF-derived bovine embryos when administered at an appropriate time of embryo development. In Exp. I, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 168); (2) vehicle, CR1aa + ETOH (0.01%) (n = 170); and (3) P4, CR1aa + ETOH + P4 (20 ng/mL in 50-μL droplet) (n = 173). In Exp. II, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 160); (2) vehicle, CR1aa + DMSO (0.01%) (n = 180); and (3) P4, CR1aa + DMSO (0.01%) + P4 (20 ng/mL in 50-μL droplet) (n = 170). All embryos were evaluated on Days 6 to 9 post-insemination and rates calculated from 8-cell embryos. In Exp. I, ETOH tended to have a detrimental effect with significantly fewer (P < 0.05) embryos (53%) developing to the blastocyst stage on Day 7 compared with the control (62%) and P4 (71%) groups. At Day 7, significantly more embryos cultured in P4 (71%) developed to the blastocyst stage compared with the control group (62%). P4 treatment significantly increased the number of Grade 1 blastocysts (25%) on Day 7 compared with vehicle (15%) and control (17%) groups. At the end of culture, there were also significantly more Day 9 hatched blastocysts in the P4 group (33%) compared with vehicle (22%) and control (21%) groups. Supplementing P4 in the culture medium increased the rate of development, resulting in significantly more blastocysts (8%) on Day 6 and hatched blastocysts (21%) on Day 8 compared with vehicle (3% and 12%) and control (0% and 8%) groups, respectively. In Exp. II, there were no significant differences between treatment groups for Day 7 blastocysts (control 54%, DMSO 61%, P4 57%) and Day 9 hatched blastocysts (control 46%, DMSO 51%, P4 46%). However, there were significantly more Grade 1 blastocysts in the P4 group (22% and 36%) on Days 6 and 8 compared with vehicle (11% and 23%) and control (13% and 23%) groups, respectively. The lack of improvement in Day 7 blastocysts and Day 9 hatched blastocysts rates leads to further uncertainty in understanding the P4 vehicle interactions. In conclusion, the results of these two experiments indicate that P4 can exert a direct effect on the developing IVF-derived bovine embryo; however, due to P4 vehicle interactions; other inert vehicles need to be explored to further evaluate the direct effects of P4 on the developing bovine embryo.


Zygote ◽  
2009 ◽  
Vol 17 (3) ◽  
pp. 187-193 ◽  
Author(s):  
So Gun Hong ◽  
Goo Jang ◽  
Hyun Ju Oh ◽  
Ok Jae Koo ◽  
Jung Eun Park ◽  
...  

SummaryBrain-derived neurotrophic factor (BDNF) signalling via tyrosine kinase B receptors may play an important role in ovarian development and function. It has been reported that metformin elevates the activity of Tyrosine kinase receptors and may amplify BDNF signalling. The objective of this study was to investigate the effect of BDNF during in vitro maturation (IVM) and/or in vitro culture (IVC) (Experiment 1), and to evaluate the collaborative effect of BDNF and metformin treatment on the developmental competence of bovine in vitro fertilized (IVF) embryos (Experiment 2). In Experiment 1, BDNF, which was added to our previously established IVM systems, significantly increased the proportions of MII oocytes at both 10 ng/ml (86.7%) and 100 ng/ml (85.4%) compared with the control (64.0%). However, there was no statistically significant difference in blastocyst development between the control or BDNF-supplemented groups. In Experiment 2, in order to investigate the effect of BDNF (10 ng/ml) and/or metformin (10−5 M) per se, TCM-199 without serum and hormones was used as the control IVM medium. The BDNF (48.3%) and BDNF plus metformin (56.5%) significantly enhanced the proportions of MII oocytes compared with the control (34.4%). Although, BDNF or metformin alone had no effect in embryo development, BDNF plus metformin significantly improved early embryo development to the 8–16-cell stage compared with the control (16.5 vs. 5.5%). In conclusion, the combination of BDNF and metformin may have a collaborative effect during the IVM period. These results could further contribute to the establishment of a more efficient bovine in vitro embryo production system.


2019 ◽  
Vol 31 (12) ◽  
pp. 1862 ◽  
Author(s):  
N. A. Martino ◽  
G. Marzano ◽  
A. Mastrorocco ◽  
G. M. Lacalandra ◽  
L. Vincenti ◽  
...  

Time-lapse imaging was used to establish the morphokinetics of equine embryo development to the blastocyst stage after invitro oocyte maturation (IVM), intracytoplasmic sperm injection (ICSI) and embryo culture, in oocytes held overnight at room temperature (22–27°C; standard conditions) before IVM. Embryos that developed to the blastocyst stage underwent precleavage cytoplasmic extrusion and cleavage to the 2-, 3- and 4-cell stages significantly earlier than did embryos that arrested in development. We then determined the rate of blastocyst formation after ICSI in oocytes held for 2 days at either 15°C or room temperature before IVM (15-2d and RT-2d treatment groups respectively). The blastocyst development rate was significantly higher in the 15-2d than in the RT-2d group (13% vs 0% respectively). The failure of blastocyst development in the RT-2d group precluded comparison of morphokinetics of blastocyst development between treatments. In any condition examined, development to the blastocyst stage was characterised by earlier cytoplasmic extrusion before cleavage, earlier cleavage to 2- and 4-cell stages and reduced duration at the 2-cell stage compared with non-competent embryos. In conclusion, this study presents morphokinetic parameters predictive of embryo development invitro to the blastocyst stage after ICSI in the horse. We conclude that time-lapse imaging allows increased precision for evaluating effects of different treatments on equine embryo development.


Sign in / Sign up

Export Citation Format

Share Document