Dimethyl sulphoxide and electrolyte-free medium improve exogenous DNA uptake in mouse sperm and subsequently gene expression in the embryo

Zygote ◽  
2018 ◽  
Vol 26 (5) ◽  
pp. 403-407
Author(s):  
Soleiman Kurd ◽  
Sara Hosseini ◽  
Fardin Fathi ◽  
Vahid Jajarmi ◽  
Mohammad Salehi

SummaryOne of the methods to generate transgenic animals is called sperm-mediated gene transfer (SMGT). Mature sperm cells can take up exogenous DNA molecules intrinsically and transfer them into the oocyte during fertilization. This study assessed the effect of dimethyl sulfoxide (DMSO) and electrolyte-free medium (EFM) on DNA uptake (EGFP–N1plasmid) in mouse sperm. Sperms cells cultured in human tubular fluid (HTF) without any treatment were considered as the control group. Sperms cells that were incubated in EFM and HTF with DNA/DMSO at 4°C were classified into EFM and HTF groups. Sperm motility and viability were assessed following treatment. In vitro fertilization (IVF) with sperm in all groups was performed. Fertilization, embryo development and GFP-positive blastocyst rates were analyzed and compared. The result showed that sperm motility and viability in EFM were better than those in the HTF group. The rate of development to reach the blastocyst stage and GFP-positive blastocysts was significantly higher in the EFM group compared with the HTF group (P<0.05). Our data demonstrate that sperm stored in the EFM group can improve the efficiency of SMGT for the generation of GFP-positive blastocysts.

2014 ◽  
Vol 26 (1) ◽  
pp. 223
Author(s):  
N. C. Canel ◽  
R. J. Bevacqua ◽  
M. I. Hiriart ◽  
D. F. Salamone

TM-intracytoplasmic sperm injection (ICSI) was demonstrated to be an effective technique for the production of transgenic animals. However, this method has not been widely applied for transgenesis in cattle, because of the low embryo developmental rates. This problem may be related to the incomplete sperm decondensation and subsequent pronuclei formation that occurs in cattle after ICSI (Malcuit et al. 2006 Reprod. Fertil. Dev. 18, 39–51). Delgado et al. showed that pretreatment with heparin-sodium salt combined with reduced glutathione (Hep-GSH) could improve bull sperm decondensation (2001 Archives of Andrology 47, 47–58). The objective of this work was to test the use of pretreated sperm with Hep-GSH for TM-ICSI, because an improvement of male pronucleus formation could cause an increase on the frequency of exogenous DNA integration. To this aim, cumulus-oocyte complexes were collected from slaughtered cow ovaries and in vitro matured for 21 h. Frozen sperm from a bull that was previously determined to produce low developmental rates post ICSI and IVF was used. It was thawed and washed twice by centrifuging at 390 × g for 10 min. After that, sperm were incubated with Tris medium supplemented with 80 μM Hep and 15 mM GSH for 20 h. After washing, semen was co-incubated with 50 ng μL–1 of pCX-EGFP plasmid for 5 min on ice and used for ICSI (Hep-GSH ICSI group). An ICSI control group was injected with semen not treated with Hep-GSH. Sham controls were injected with 50 ng μL–1 of pCX-EGFP. Haploid and diploid parthenogenetic controls were also included (Haplo PA and Diplo PA groups). Oocytes were activated by a 4 min exposure to 5 μM ionomycin, placed on TCM-199 for 3 h, and treated with 1.9 mM DMAP for 3 h; Diplo PA were immediately exposed to DMAP after ionomycin treatment. Embryos were cultured in SOF medium. Cleavage and blastocyst rates were evaluated on Days 2 and 7 post ICSI, respectively. Expression of egfp was assayed at Day 4 and at the blastocyst stage. Results: Hep-GSH ICSI group showed higher cleavage rates than ICSI control (68.5%, n = 89 v. 35%, n = 60), and lower than Sham, Diplo PA, and Haplo Pa groups (94% n = 50, 95.1% n = 61, and 85.1% n = 47, respectively; Fisher's exact test, P ≤ 0.05). Although blastocyst rates from ICSI groups did not differ from Haplo PA (21.2%) and Sham groups (8%), Hep-GSH ICSI produced higher rates than ICSI control (19.1 v. 5%). The higher blastocyst rates were observed for Diplo PA (47.5%; P ≤ 0.05). Transgene expression levels at Day 4 were higher for both Hep-GSH ICSI and ICSI control than for Sham control (24.7 and 11.7% v. 0%, respectively; P ≤ 0.05). Rates of egfp expressing blastocysts/injected oocytes were significantly higher for Hep-GSH ICSI than for ICSI and Sham control groups (13.5 v. 1.7 and 0%, respectively; P ≤ 0.05). Conclusions: Pretreatment of bull sperm with Hep-GSH can increase blastocyst rates after ICSI, even when low quality semen is used. Additionally, the employment of Hep-GSH treatment increased rates of transgene expressing blastocysts. It could be a useful strategy for massively implementing TM-ICSI in bovine, for the production of transgenic animals.


2007 ◽  
Vol 19 (1) ◽  
pp. 317
Author(s):  
T. S. Kim ◽  
Y. Cao ◽  
H. T. Cheong ◽  
B. K. Yang ◽  
C. K. Park

Sperm mediated gene transfer (SMGT) is based on the ability of spermatozoa to bind and internalize exogenous DNA and transfer it into the oocytes at fertilization. The purpose of this study was to assess introducing exogenous DNA into boar spermatozoa by DNA solution or DNA/liposome complex under different conditions (period of incubation, exogenous DNA, liposome, and concentration of spermatozoa). Genomic DNA of sperm loaded with DNA by treatment was isolated by alkaline lysis. Quantitation of exogenous DNA amplified by PCR was analyzed by agarose electrophoresis densitometry. The quality of treated spermatozoa under the best conditions or no treatment (control) was evaluated during incubation (0, 2, 4, and 6 h) for viability (SYBR-14/PI), motility (Makler counting chamber), morphology (rose bengal staining), and acrosomal status (Coomassie staining). Sperm loaded with DNA also were used for in vitro fertilization. Immature oocytes incubated in TCM-199 medium for 44 h were fertilized in mTBM medium for 6 h and cultured in PZM-3. Cleavage and development of embryos were assessed on Days 2 and 7 of culture, respectively. Transfection rates at the blastocyst stage were assessed by PCR analysis. Data were evaluated by Duncan&apos;s multiple-range test using the GLM procedure. In the preliminary experiment, DNA uptake of spermatozoa by DNA solution and liposome/DNA complex was completed within 90-120 min. Transfection efficiency of spermatozoa was significantly (P &lt; 0.05) higher in the 105 spermatozoa group than in the other groups (104, 106, and 107 spermatozoa). The transfection efficiency was gradually increased by increasing the concentration of exogenous DNA. On the other hand, viability of transfected spermatozoa by all treatments (control, DNA solution, and DNA/liposome) at 0 h (72.3 � 0.2, 70.8 � 1.8, and 68.0 � 2.2%, respectively) of storage was significantly (P &lt; 0.05) lower than for fresh spermatozoa (83.3 � 1.7%). Survival and motility of all treatments after 4 h of storage were significantly (P &lt; 0.05) lower than at 0 and 2 h. Both abnormality and acrosome reaction of spermatozoa were gradually increased with prolonged storage periods. On the other hand, the cleavage rate of embryos by DNA/liposome complex (56.3 � 2.3%) was significantly (P &lt; 0.05) lower compared to both DNA solution (64.0 � 1.1%) and control (67.8 � 2.3%). The developmental rates of blastocysts were significantly (P &lt; 0.05) lower in the liposome/DNA complex and DNA solution groups (9.1 � 1.3 and 11.3 � 0.8%) than in the control group (22.2 � 0.6%). The transfection rates of blastocysts were higher in the liposome/DNA group (54.3 � 12.0%) than in the DNA solution group (38.7 � 6.6%). These results show that the SMGT method under the control conditions efficiently transfers exogenous DNA into the porcine oocytes. This work was supported by the Research on the Production of Bio-organs (No. 2005 03020302) Ministry of Agriculture and Forestry, Republic of Korea


2005 ◽  
Vol 17 (2) ◽  
pp. 219 ◽  
Author(s):  
C.E. Ferguson ◽  
T.R. Davidson ◽  
M.R.B. Mello ◽  
A.S. Lima ◽  
D.J. Kesler ◽  
...  

There has been much debate over a direct role for progesterone (P4) in early bovine embryo development. While previous attempts to supplement bovine embryos in vitro with P4 produced results that vary and are often contradictory, this may be a response of administering P4 at inappropriate times. Therefore, the objective of these experiments was to determine if P4 could exert a direct effect on developing IVF-derived bovine embryos when administered at an appropriate time of embryo development. In Exp. I, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 168); (2) vehicle, CR1aa + ETOH (0.01%) (n = 170); and (3) P4, CR1aa + ETOH + P4 (20 ng/mL in 50-μL droplet) (n = 173). In Exp. II, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 160); (2) vehicle, CR1aa + DMSO (0.01%) (n = 180); and (3) P4, CR1aa + DMSO (0.01%) + P4 (20 ng/mL in 50-μL droplet) (n = 170). All embryos were evaluated on Days 6 to 9 post-insemination and rates calculated from 8-cell embryos. In Exp. I, ETOH tended to have a detrimental effect with significantly fewer (P < 0.05) embryos (53%) developing to the blastocyst stage on Day 7 compared with the control (62%) and P4 (71%) groups. At Day 7, significantly more embryos cultured in P4 (71%) developed to the blastocyst stage compared with the control group (62%). P4 treatment significantly increased the number of Grade 1 blastocysts (25%) on Day 7 compared with vehicle (15%) and control (17%) groups. At the end of culture, there were also significantly more Day 9 hatched blastocysts in the P4 group (33%) compared with vehicle (22%) and control (21%) groups. Supplementing P4 in the culture medium increased the rate of development, resulting in significantly more blastocysts (8%) on Day 6 and hatched blastocysts (21%) on Day 8 compared with vehicle (3% and 12%) and control (0% and 8%) groups, respectively. In Exp. II, there were no significant differences between treatment groups for Day 7 blastocysts (control 54%, DMSO 61%, P4 57%) and Day 9 hatched blastocysts (control 46%, DMSO 51%, P4 46%). However, there were significantly more Grade 1 blastocysts in the P4 group (22% and 36%) on Days 6 and 8 compared with vehicle (11% and 23%) and control (13% and 23%) groups, respectively. The lack of improvement in Day 7 blastocysts and Day 9 hatched blastocysts rates leads to further uncertainty in understanding the P4 vehicle interactions. In conclusion, the results of these two experiments indicate that P4 can exert a direct effect on the developing IVF-derived bovine embryo; however, due to P4 vehicle interactions; other inert vehicles need to be explored to further evaluate the direct effects of P4 on the developing bovine embryo.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 327-328
Author(s):  
Galina Singina

Abstract The oocyte quality acquired during in vitro maturation (IVM) are the main limitative factors affecting the embryo production. The aim of the present research was to study effects of fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1) during IVM of bovine oocytes on their developmental potential after parthenogenetic activation. Bovine cumulus-oocyte complexes (COC; n = 1176) were cultured for 22h in either standard maturation medium (TCM-199 supplemented with 10% fetal calf serum (FCS), 0.2 mM sodium pyruvate, 10 μg/ml FSH and 10 μg/ml LH; Control) or maturation medium supplemented with different concentrations (5–160 ng/ml) of FGF2 and IGF1. After IVM, matured oocytes activated by sequential treatment with ionomycin followed by DMAP and cyclohexamide and then cultured up to the blastocyst stage. The obtained blastocysts were fixed, and the total cell number and the level of apoptosis were determined using DAPI and TUNEL staining. The data from 4 replicates (77–91 oocytes per treatment) were analyzed by ANOVA. Cleavage rates of activated oocytes did not differ between groups and ranged from 63.7 to 68.1%. The addition of 10, 20 and 40 ng/ml of FGF2 to the IVM medium led to an increase in the yield of blastocysts [from 19.6±1.8% (Control) to 35.2±3.4, 29.8±1.9 and 31.1±2.1%, respectively (P&lt;0.05)] and in the total cell number in embryos that developed to the blastocyst stage (P&lt;0.05). Meanwhile, the blastocyst yield and the total cell number in blastocysts in the IGF1-treated groups were similar to that in the control group. No effects of both growth factors on the proportion of apoptotic nuclei in blastocysts (5.3–7.1%) were observed. Thus, FGF2 (but not IGF1) are able to maintain competence for parthenogenetic development of bovine COC during their maturation invitro. Supported by RFBR (18-29-07089) and the Ministry of Science and Higher Education of Russia.


Reproduction ◽  
2006 ◽  
Vol 131 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Augusta Zannoni ◽  
Marcella Spinaci ◽  
Chiara Bernardini ◽  
Maria Laura Bacci ◽  
Eraldo Seren ◽  
...  

Several reliable methods to produce transgenic animals utilize the male genome. After penetration into oocyte, sperm DNA undergoes dramatic conformational changes that could represent a great opportunity for exogenous DNA to be integrated in the zygote genome. Among the enzymes responsible for sperm remodeling, a nuclease could be involved. The presence of a DNase I in oocytes has not been much investigated. To date, an immunolocalization of DNase I has been reported only in rat immature oocytes and the presence of nuclease activities has been shown in avian oocytes. The present study was conducted to verify whether a DNase-I like activity is present in MII mature pig oocytes. To do this, oocyte extracts were assessed for nuclease activity by a plasmid degradation assay and by zymography; these analyses evidenced a 33 kDa, Ca2+/Mg2+ dependent DNase I-like activity that was inhibited by Zn2+. A further identification of DNase I was achieved by Western blot, immunofluorescence and RT-PCR experiments. Moreover, the presence of the enzyme activity was confirmed by the rapid degradation of exogenous DNA microinjected into the ooplasm. Finally, the exogenous DNA transferred to oocyte by spermatozoa during sperm mediated gene transfer in vitro fertilisation protocol seemed to be protected from DNase I degradation and to persist in the ooplasm till 6 h. These results, together with the high efficiency of sperm based transgenesis methods, suggest that the association with spermatozoa protects exogenous DNA from nuclease activities.


Zygote ◽  
2018 ◽  
Vol 26 (2) ◽  
pp. 162-167 ◽  
Author(s):  
Mohamed Fathi ◽  
A. Salama ◽  
Magdy R. Badr

SummaryThe aim of the current study was to investigate the effect of caffeine supplementation during in vitro maturation (IVM) for different maturation times on the developmental potential of canine oocytes recovered from ovariohysterectomized bitches. The recovered cumulus–oocytes complexes were in vitro matured for 72 h. Here, 10 mM caffeine was added to the maturation medium for different incubation times (caffeine from 0–72 h maturation, caffeine for the first 24 h of maturation only, caffeine addition from 24 to 48 h maturation time, caffeine addition from 48 to 72 h maturation or in caffeine-free medium, control group). The matured oocytes were in vitro fertilized using frozen–thawed spermatozoa. The presumptive zygotes were in vitro cultured in synthetic oviductal fluid medium for 5 days. The results showed that both maturation and fertilization rates were significantly higher (P ˂ 0.05) using caffeine-treated medium for the first 24 h of maturation compared with the control and other two groups of caffeine treatment (from 24 to 48 h and from 48 to 72 h), whereas use of caffeine-treated medium for a 0–72 h incubation time did not affect these rates (P > 0.05). Interestingly, the matured oocytes in caffeine-supplemented medium for the first 24 h or from 0–72 h showed a significant (P ˂ 0.05) increase in the total number of cleaved embryos compared with the control group. In conclusion, supplementation of the maturation medium with 10 mM caffeine for the first 24 h of maturation or during the whole maturation time (0–72 h) improved nuclear maturation and subsequent embryo development preimplantation following in vitro fertilization.


2007 ◽  
Vol 19 (1) ◽  
pp. 208
Author(s):  
N. W. K. Karja ◽  
K. Kikuchi ◽  
M. Ozawa ◽  
M. Fahrudin ◽  
T. Somfai ◽  
...  

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), an enzyme required to catalyze the oxidation of NADPH to NADP during the metabolism of glucose via the pentose phosphate pathway (PPP), was considered as contributing to intracellular reactive oxygen species (ROS) production. Production of superoxide anion and H2O2 via NADPH oxidase has been reported on a rabbit blastocyst surface (Manes and Lai 1995 J. Reprod. Fertil. 104, 69–75). The objective of this study was to examine the effects on in vitro development and intracellular ROS content after the addition of diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, or dehydroepiandrosterone (DHEA), an inhibitor of glucose-6-phosphate dehydrogenase (G6PDH), to culture medium during the early embryonic development of in vitro-produced (IVP) porcine embryos. To confirm that these inhibitors lead to reduction in NADPH concentration in the embryo and hence likely to be inhibiting the PPP, a brilliant cresyl blue (BCB) test was performed on Day 2 (the day of insemination = Day 0) of culture. Porcine cumulus–oocyte complexes were matured and fertilized in vitro as described previously (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041). Prezumptive zygotes were then cultured in NCSU-37 supplemented with 5.5 mM glucose and DPI at concentrations of 0.5 or 1 nM or DHEA at concentrations of 10 or 100 �M (DPI-0.5, DPI-1, DHEA-10 and DHEA-100 groups, respectively) from Day 0 to Day 2 of culture. All of the embryos were cultured subsequently until Day 6 in NCSU-37 supplemented with only 5.5 mM glucose. Data were analyzed by ANOVA. On Day 6, the development to the blastocyst stage of embryos in DPI-0.5, DPI-1, DHEA-10, and DHEA-100 groups were 16.1, 17.6, 16.1, and 19.5%, respectively, which were not significantly different from that of the control group (17.5%) (n d 165 per group, 5 replicates). However, the mean cell number in blastocysts derived from DPI-1, DHEA-10, and DHEA-100 groups (40.8 � 2.3, 39.3 � 1.7, and 42.5 � 2.7, respectively) was significantly higher (P &lt; 0.01) than those in the control (33.4 � 1.6) and DPI-0.5 (32.7 � 1.6) groups. At 20 min after an exposure to BCB, the percentage of BCB+ embryos in DPI-1, DHEA-10, and DHEA-100 groups (73.8, 79.9, and 77.8%, respectively) were significantly higher (P &lt; 0.01) than those in the control and DPI-0.5 groups (42% and 53.9%, respectively) (n = 81-92 per group, 6 replicates), indicating that these two inhibitors effectively induce the reduction of NADPH concentration in the embryos. Moreover, the addition of DPI at 1 nM or DHEA at 10 or 100 �M significantly decreased the H2O2 content of Day 2 embryos as compared with control embryos (n = 48-53 per group, 7 replicates). These results suggest that the addition of either DPI or DHEA to the medium during the first 2 days of culture did not impair the development of the embryos to the blastocyst stage. Decrease of cellular ROS production in Day 2 embryos in this study is interpreted as a result of inhibition of the NADPH oxidase by DPI or of the G6PDH by DHEA.


2006 ◽  
Vol 18 (2) ◽  
pp. 249
Author(s):  
G. Magarey ◽  
J. Herrick ◽  
K. Thiangtum ◽  
W. Tunwattana ◽  
W. Swanson

Wild populations of fishing cats (Prionailurus viverrinus) in Southeast Asia are in decline, primarily due to habitat loss. Because the fishing cat population in North American zoos is small (n = 69) and inbred (F = 0.17) with relatively low genetic variation (86%), infusion of new founder genes from Asia is a conservation priority. Importation of cryopreserved semen for use with IVF and ET may offer one alternative to the international transport of living animals. In this study, our objectives were to (1) compare motility longevity of fresh vs. frozen-thawed fishing cat spermatozoa in two culture media, (2) evaluate ovarian responses to exogenous gonadotropins, and (3) assess development of IVF embryos produced with fresh vs. frozen-thawed spermatozoa. Raw semen was collected via electroejaculation from male fishing cats (n = 4), divided into groups, and washed. Two sperm pellets were resuspended in either Ham's F10 medium (HF10; with 5% FBS) or our feline optimized culture medium (FOCM; with 0.4% BSA); another pellet was diluted in TEST egg yolk, cooled to 5�C over 3 h, glycerated (4%), and cryopreserved in straws over LN2 vapor. Frozen sperm samples were thawed, washed, and diluted in either HF10 or FOCM. Fresh and frozen-thawed sperm motility (percent motile, rate of forward progress) in each medium (10 � 106 motile sperm/mL) was assessed (at 0, 1, 3, and 6 h) in microdrops under oil during culture (38�C; 6% CO2 in air). Female fishing cats (n = 10) were treated with exogenous gonadotropins (150 IU eCG, 100 IU hCG, 85-h interval) and ovarian follicles were aspirated laparoscopically. Recovered oocytes were inseminated with fresh (2 � 105 motile sperm/mL) or frozen-thawed (5 � 105 motile sperm/mL) spermatozoa in FOCM microdrops; resulting embryos were either cryopreserved or cultured in FOCM (with 5% FBS added at 72 h post-insemination) for 7 days. Sperm motility over time did not differ (P > 0.05) between media for either fresh or frozen-thawed samples; however, across media, frozen-thawed sperm motility was lower (P < 0.05) and declined faster (P < 0.05) compared to fresh spermatozoa. Females produced an average (�SEM) of 9.8 � 2.9 mature ovarian follicles, allowing recovery of 7.3 � 2.6 high-quality oocytes per female. Oocyte cleavage percentage at 42 h p.i. was lower (P < 0.05) with frozen-thawed spermatozoa (38%, 11/29) compared to freshly collected spermatozoa (68%, 17/25). Overall, 35% (6/17) of cultured embryos developed to blastocysts with no difference (P > 0.05) between embryos produced with frozen-thawed (4/11) vs. fresh (2/6) spermatozoa. Although fishing cat sperm motility and fertility appear compromised after cryopreservation, our results demonstrate the ability of frozen-thawed spermatozoa to produce IVF embryos that are capable of developing to blastocyst stage in vitro. This work was supported by (NIH RR015388).


2006 ◽  
Vol 18 (2) ◽  
pp. 248
Author(s):  
S.-G. Lee ◽  
C.-H. Park ◽  
D.-H. Choi ◽  
H.-Y. Son ◽  
C.-K. Lee

Use of blastocysts produced in vitro would be an efficient way to generate embryonic stem (ES) cells for the production of transgenic animals and the study of developmental gene regulation. In pigs, the morphology and cell number of in vitro-produced blastocysts are inferior to these parameters in their in vivo counterparts. Therefore, establishment of ES cells from blastocysts produced in vitro might be hindered by poor embryo quality. The objective of this study was to increase the cell number of blastocysts derived by aggregating 4–8-cell stage porcine embryos produced in vitro. Cumulus–oocyte complexes were collected from prepubertal gilt ovaries, and matured in vitro. Embryos at the 4–8-cell stage were produced by culturing embryos for two days after in vitro fertilization (IVF). After removal of the zona pellucida with acid Tyrode’s solution, one (1X), two (2X), and three (3X) 4–8-cell stage embryos were aggregated by co-culturing them in aggregation plates followed by culturing to the blastocyst stage. After 7 days, the developmental ability and the number of cells in aggregated embryos were determined by staining with Hoechst 33342 and propidium iodide. The percentage of blastocysts was higher in both 2X and 3X aggregated embryos compared to that of 1X and that of intact controls (Table 1). The cell number of blastocysts also increased in aggregated embryos compared to that of non-aggregated (1X) embryos and controls. This result suggests that aggregation might improve the quality of in vitro-fertilized porcine blastocysts by increasing cell numbers, thus becoming a useful resource for isolation and establishment of porcine ES cells. Further studies are required to investigate the quality of the aggregated embryos in terms of increasing the pluripotent cell population by staining for Oct-4 and to apply improved aggregation methods in nuclear-transferred (NT) porcine embryos. Table 1. Development, cell number, and ICM ratio of aggregated porcine embryos


2007 ◽  
Vol 19 (1) ◽  
pp. 288
Author(s):  
C. Kubota ◽  
T. Kojima ◽  
T. Nagai ◽  
X. Tian ◽  
X. Yang

The timing of IVM–IVF–IVC is restricted by the onset of oocyte maturation, and sometimes oocytes must be treated at midnight. If we could regulate the timing of IVM of oocytes without decreasing their developmental competence, the IVM–IVF–IVC system could be a more applied technology. The present study was performed to examine the effects of in vitro storage of bovine oocytes in simple media prior to maturation culture to manipulate the start of IVM. Bovine follicular fluid (bFF), Dulbecco&apos;s PBS (PBS), M199 Earle salts (M199), and Earle salts supplemented with 5 mM NaHCO3 (M199A) were used as the fundamental media, after an addition of antibiotics, for in vitro storage of bovine cumulus&ndash;oocyte complexes (COCs) collected from ovaries obtained at the slaughterhouse. The fundamental media except for bFF were supplemented with 10&percnt; fetal bovine serum (FBS) or 1 mg mL&minus;1 polyvinyl alcohol (PVA). COCs were collected from follicles (3&ndash;8 mm in diameter) and washed twice in each medium; then approximately 50 COCs were submerged in 1 mL of each medium in cryotubes (Falcon #2812, 2.5 mL; Becton Dickinson Labware, Lincoln, NJ, USA), which were stored in a container kept at 38.5&deg;C for 22 h under air-closed condition (in vitro storage: IVS). Subsequently, the stored COCs were in vitro-matured (IVM) for 22 h in M199 with 10&percnt; FBS and 20 &micro;g mL&minus;1 estradiol, fertilized (IVF), and cultured in CR1aa (IVC) for examination of their development to the blastocyst stage (Kubota et al. 1998 Mol. Reprod. Dev. 51, 281&ndash;286). Fresh oocytes without IVS were used as controls. The nuclear status of oocytes after IVS&ndash;IVM was compared to that of control oocytes by aceto-orcein stain. Their developmental rates to the blastocyst stage after IVM&ndash;IVF&ndash;IVC were compared between experimental and control groups. The experiment was repeated more than 3 times, and results were statistically analyzed using Student&apos;s t-test. When bFF and PBS supplemented with FBS or PVA were used for IVS, the rates of survived COCs after IVS and the development to the blastocyst stage after IVM&ndash;IVF&ndash;IVC (bFF (n &equals; 87): 0&percnt;, 0&percnt;; PBS/FBS (n &equals; 72): 84&percnt;, 1&percnt;; and PBS/PVA (n &equals; 81): 89&percnt;, 6&percnt;, respectively) were significantly lower than those of the control group (n &equals; 406; 97&percnt; and 29&percnt;, respectively). On the other hand, when M199A supplemented with FBS or PVA was used for IVS, the survival rate after IVS and the developmental rate to the blastocyst stage after IVS&ndash;IVM&ndash;IVF (M199A/FBS (n &equals; 97): 82&percnt;, 28&percnt;; and M199A/PVA (n &equals; 111): 98&percnt;, 31&percnt;, respectively) did not differ from those of the control group. After IVS, cumulus expansion was not seen and most of the oocyte nuclei reached the GVBD stage. These results suggest that the nuclear maturation progress of bovine oocytes can be regulated for at least 22 h in M199A without any deleterious influence on the number of oocytes surviving at an immature state after the storage and their subsequent development to the blastocyst stage after IVM&ndash;IVF&ndash;IVC. The delayed maturation allows a flexible fertilization schedule which is advantageous in research and industrial applications.


Sign in / Sign up

Export Citation Format

Share Document