Deep Sea Ostracodes and Climate Change

2003 ◽  
Vol 9 ◽  
pp. 247-264 ◽  
Author(s):  
Thomas M. Cronin ◽  
Gary S. Dwyer

Ostracodes are bivalved Crustacea whose fossil shells constitute the most abundant and diverse metazoan group preserved in sediment cores from deep and intermediate ocean water depths. The ecology, zoogeography, and shell chemistry of many ostracode taxa makes them useful for paleoceanographic research on topics ranging from deep ocean circulation, bottom-water temperature, ecological response to global climate change and many others. However, the application of ostracodes to the study of climate change has been hampered by a number of factors, including the misconception that they are rare or absent in deep-sea sediments and the lack of taxonomic and zoogeographic data. In recent years studies from the Atlantic, Pacific, and Arctic Oceans show that ostracodes are abundant enough for quantitative assemblage analysis and that the geochemistry of their shells can be a valuable tool for paleotemperature reconstruction. This paper presents practical guidelines for using ostracodes in investigations of climate-driven ocean variability and the ecological and evolutionary impacts of these changes.

2021 ◽  
Author(s):  
Anna Joy Drury ◽  
Thomas Westerhold ◽  
David A. Hodell ◽  
Mitchell Lyle ◽  
Cédric M. John ◽  
...  

<p>During the late Miocene, meridional sea surface temperature gradients, deep ocean circulation patterns, and continental configurations evolved to a state similar to modern day. Deep-sea benthic foraminiferal stable oxygen (δ<sup>18</sup>O) and carbon (δ<sup>13</sup>C) isotope stratigraphy remains a fundamental tool for providing accurate chronologies and global correlations, both of which can be used to assess late Miocene climate dynamics. Until recently, late Miocene benthic δ<sup>18</sup>O and δ<sup>13</sup>C stratigraphies remained poorly constrained, due to relatively poor global high-resolution data coverage.</p><p>Here, I present ongoing work that uses high-resolution deep-sea foraminiferal stable isotope records to improve late Miocene (chrono)stratigraphy. Although challenges remain, the coverage of late Miocene benthic δ<sup>18</sup>O and δ<sup>13</sup>C stratigraphies has drastically improved in recent years, with high-resolution records now available across the Atlantic and Pacific Oceans. The recovery of these deep-sea records, including the first astronomically tuned, deep-sea integrated magneto-chemostratigraphy, has also helped to improve the late Miocene geological timescale. Finally, I will briefly touch upon how our understanding of late Miocene climate evolution has improved, based on the high-resolution deep-sea archives that are now available.</p>


2021 ◽  
Author(s):  
Charlotte O'Brien ◽  
Peter Spooner ◽  
David Thornalley ◽  
Jack Wharton ◽  
Eirini Papachristopoulou ◽  
...  

<p><strong>Traditionally, deep-sea ecosystems have been considered to be insulated from the effects of modern climate change. Yet, with the recognition of the importance of food supply from the surface ocean and deep-sea currents to sustaining these systems, the potential for rapid response of benthic systems to climate change is gaining increasing attention. North Atlantic benthic responses to past climate change have been well-documented using marine sediment cores on glacial-interglacial timescales, and ocean sediments have also begun to reveal that planktic species assemblages are already being influenced by global warming. However, very few ecological time-series exist for the deep ocean covering the Holocene-through-industrial era. Here, we use benthic and planktic foraminifera found in Northeast Atlantic (EN539-MC16-A/B and RAPID-17-5P), Northwest Atlantic (KNR158-4-10MC and KNR158-4-9GGC) and Labrador Sea (RAPID-35-25B and RAPID-35-14P) sediments to show that, in locations beneath areas of major North Atlantic surface water change, benthic ecosystems have also changed significantly over the industrial era relative to the Holocene. We find that the response of the benthos is dependent on changes in the surface ocean near to the study sites. Our work highlights the spatial heterogeneity of these benthic ecosystem changes and therefore the need for local-regional scale modelling and observations to better understand responses to deep-sea circulation changes and modern surface climate change. </strong></p>


Author(s):  
Mark Maslin

The assumption of a linear relationship between greenhouse gases and climate change may be wrong. ‘Climate surprises’ examines the possibility that there are thresholds—or tipping points—in the climate system that may occur as we warm the planet. These include the possibility that Greenland and/or the Antarctic could start to irreversibly melt, raising sea level by metres; a change in North Atlantic driven deep-ocean circulation could produce extreme seasonal weather in Europe; dieback of the Amazon rainforest due to deforestation, with concurrent depletion in biodiversity; and, finally, a release of gas hydrates from deep beneath the oceans could occur if the oceans warm up sufficiently, again accelerating climate change.


2021 ◽  
Vol 8 ◽  
Author(s):  
Charlotte L. O’Brien ◽  
Peter T. Spooner ◽  
Jack H. Wharton ◽  
Eirini Papachristopoulou ◽  
Nicolas Dutton ◽  
...  

Traditionally, deep-sea ecosystems have been considered to be insulated from the effects of modern climate change, but with the recognition of the importance of food supply from the surface ocean and deep-sea currents to sustaining these systems, the potential for rapid response of benthic systems to climate change is gaining increasing attention. However, very few ecological time-series exist for the deep ocean covering the twentieth century. Benthic responses to past climate change have been well-documented using marine sediment cores on glacial-interglacial timescales, and ocean sediments have also begun to reveal that planktic species assemblages are already being influenced by global warming. Here, we use benthic foraminifera found in mid-latitude and subpolar North Atlantic sediment cores to show that, in locations beneath areas of major surface water change, benthic ecosystems have also changed significantly over the last ∼150 years. The maximum benthic response occurs in areas which have seen large changes in surface circulation, temperature, and/or productivity. We infer that the observed surface-deep ocean coupling is due to changes in the supply of organic matter exported from the surface ocean and delivered to the seafloor. The local-to-regional scale nature of these changes highlights that accurate projections of changes in deep-sea ecosystems will require (1) increased spatial coverage of deep-sea proxy records, and (2) models capable of adequately resolving these relatively small-scale oceanographic features.


Author(s):  
Pontus Lurcock ◽  
Fabio Florindo

Antarctic climate changes have been reconstructed from ice and sediment cores and numerical models (which also predict future changes). Major ice sheets first appeared 34 million years ago (Ma) and fluctuated throughout the Oligocene, with an overall cooling trend. Ice volume more than doubled at the Oligocene-Miocene boundary. Fluctuating Miocene temperatures peaked at 17–14 Ma, followed by dramatic cooling. Cooling continued through the Pliocene and Pleistocene, with another major glacial expansion at 3–2 Ma. Several interacting drivers control Antarctic climate. On timescales of 10,000–100,000 years, insolation varies with orbital cycles, causing periodic climate variations. Opening of Southern Ocean gateways produced a circumpolar current that thermally isolated Antarctica. Declining atmospheric CO2 triggered Cenozoic glaciation. Antarctic glaciations affect global climate by lowering sea level, intensifying atmospheric circulation, and increasing planetary albedo. Ice sheets interact with ocean water, forming water masses that play a key role in global ocean circulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


Sign in / Sign up

Export Citation Format

Share Document