scholarly journals Psychophysiological Analysis of the Influence of Vasopressin on Speech in Patients with Post-Stroke Aphasias

2007 ◽  
Vol 10 (1) ◽  
pp. 178-188 ◽  
Author(s):  
Sergei G. Tsikunov ◽  
Svetlana G. Belokoskova

Speech is an attribute of the human species. Central speech disorders following stroke are unique models for the investigation of the organization of speech. Achievements in neurobiology suggest that there are possible neuroendocrine mechanisms involved in the organization of speech. It is known that the neuropeptide vasotocin, analogous of vasopressin in mammals, modulates various components of vocalization in animals. Furthermore, the positive influence of vasopressin on memory, which plays an important role in the formation of speech, has been described. In this study, speech organization processes and their recovery with the administration of vasopressin (1-desamino-8-D-arginin-vasopressin) to 26 patients with chronic aphasias after stroke were investigated. Results showed that sub-endocrine doses of the neuropeptide with intranasal administration had positive influence primarily on simple forms of speech and secondarily on composite forms. There were no statistically significant differences between the sensory and integrative components of the organization of speech processes with vasopressin. In all cases, the positive effect of the neuropeptide was demonstrated. As a result of the effects, speech regulated by both brain hemispheres improved. It is suggested that the neuropeptide optimizes the activity both in the left and right hemispheres, with primary influence on the right hemisphere. The persistence of the acquired effects is explained by an induction of compensatory processes resulting in the reorganization of the intra-central connections by vasopressin.

2020 ◽  
Author(s):  
Elmira Zaynagutdinova ◽  
Karina Karenina ◽  
Andrey Giljov

Abstract Behavioural lateralization, which reflects the functional specializations of the two brain hemispheres, is assumed to play an important role in cooperative intraspecific interactions. However, there are few studies focused on the lateralization in cooperative behaviours of individuals, especially in a natural setting. In the present study, we investigated lateralized spatial interactions between the partners in life-long monogamous pairs. The male-female pairs of two geese species (barnacle, Branta leucopsis, and white-fronted, Anser albifrons geese), were observed during different stages of the annual cycle in a variety of conditions. In geese flocks, we recorded which visual hemifield (left/right) the following partner used to monitor the leading partner relevant to the type of behaviour and the disturbance factors. In a significant majority of pairs, the following bird viewed the leading partner with the left eye during routine behaviours such as resting and feeding in undisturbed conditions. This behavioural lateralization, implicating the right hemisphere processing, was consistent across the different aggregation sites and years of the study. In contrast, no significant bias was found in a variety of geese behaviours associated with enhanced disturbance (when alert on water, flying or fleeing away when disturbed, feeding during the hunting period, in urban area feeding and during moulting). We hypothesize that the increased demands for right hemisphere processing to deal with stressful and emergency situations may interfere with the manifestation of lateralization in social interactions.


2017 ◽  
Vol 9 (2) ◽  
pp. 131-136 ◽  
Author(s):  
Jörg Mauler ◽  
Irene Neuner ◽  
Georg Neuloh ◽  
Bruno Fimm ◽  
Frank Boers ◽  
...  

In the past, the eloquent areas could be deliberately localised by the invasive Wada test. The very rare cases of dissociated crossed speech areas were accidentally found based on the clinical symptomatology. Today functional magnetic resonance imaging (fMRI)-based imaging can be employed to non-invasively localise the eloquent areas in brain tumour patients for therapy planning. A 41-year-old, left-handed man with a low-grade glioma in the left frontal operculum extending to the insular cortex, tension headaches, and anomic aphasia over 5 months underwent a pre-operative speech area localisation fMRI measurement, which revealed the evidence of the transhemispheric disposition, where the dominant Wernicke speech area is located on the left and the Broca’s area is strongly lateralised to the right hemisphere. The outcome of the Wada test and the intraoperative cortico-subcortical stimulation mapping were congruent with this finding. After tumour removal, language area function was fully preserved. Upon the occurrence of brain tumours with a risk of impaired speech function, the rare dissociate crossed speech areas disposition may gain a clinically relevant meaning by allowing for more extended tumour removal. Hence, for its identification, diagnostics which take into account both brain hemispheres, such as fMRI, are recommended.


Author(s):  
Norman D. Cook

Speech production in most people is strongly lateralized to the left hemisphere (LH), but language understanding is generally a bilateral activity. At every level of linguistic processing that has been investigated experimentally, the right hemisphere (RH) has been found to make characteristic contributions, from the processing of the affective aspects of intonation, through the appreciation of word connotations, the decoding of the meaning of metaphors and figures of speech, to the understanding of the overall coherency of verbal humour, paragraphs and short stories. If both hemispheres are indeed engaged in linguistic decoding and both processes are required to achieve a normal level of understanding, a central question concerns how the separate language functions on the left and right are integrated. This chapter reviews relevant studies on the hemispheric contributions to language processing and the role of interhemispheric communications in cognition.


Neurology ◽  
1998 ◽  
Vol 51 (2) ◽  
pp. 458-464 ◽  
Author(s):  
D. Boatman ◽  
J. Hart ◽  
R. P. Lesser ◽  
N. Honeycutt ◽  
N. B. Anderson ◽  
...  

Objective: To investigate the right hemispheric speech perception capabilities of an adult right-handed patient with seizures.Methods: Consecutive, unilateral, intracarotid sodium amobarbital injections and left hemispheric electrical interference mapping were used to determine lateralization and localization of speech perception, measured as syllable discrimination.Results: Syllable discrimination remained intact after left and right intracarotid sodium amobarbital injections. Language otherwise strongly lateralized to the left hemisphere. Despite evidence of bilateral speech perception capabilities, electrical interference testing in the left posterior temporal lobe impaired syllable discrimination.Conclusions: The results suggest a functionally symmetric, parallel system in the adult brain with preferential use of left hemispheric pathways for speech perception.


1983 ◽  
Vol 57 (3) ◽  
pp. 923-929 ◽  
Author(s):  
John L. Andreassi ◽  
Charles S. Rebert ◽  
Ferol F. Larsen

Reaction time and signal detection performance were measured during a 78-min. vigilance task. 12 right-handed male subjects served in two experimental sessions. Subjects focused on a central fixation point and responded to signals presented at unpredictable times in one of three locations: 2.5° to right of central fixation, central, and 2.5° to the left of center. Subjects decided whether to press a response key with either the left or right hand with each presentation. Over-all vigilance performance (signal detections and response time) was similar for left and right visual-field presentations. Evidence from reaction times indicated that responses controlled by the left hemisphere were faster to a verbal stimulus (T) while reactions controlled by the right hemisphere were faster to an apparent non-verbal stimulus, an inverted T.


1978 ◽  
Vol 9 (1) ◽  
pp. 20-32
Author(s):  
Grayson H. Wheatley ◽  
Robert Mitchell ◽  
Robert L. Frankland ◽  
Rosemarie Kraft

Evidence is presented for hemisphere specialization of the two brain hemispheres: the left hemisphere specialized for logico-analytic tasks and the right hemisphere, visuo-spatial tasks. A hypothesis is put forth for the emergence of the specialization that suggests a shift from predominant right hemisphere processing in infancy to predominant left hemisphere processing in adulthood. Results of the studies reviewed suggest the emergence of concrete-operational thought as the left hemisphere becomes capable of processing logical tasks. Electroencephalography seems particularly useful in determining specialization and mapping changes in hemispheric asymmetry. Implications for school mathematics curriculum are presented.


2002 ◽  
Vol 94 (3) ◽  
pp. 1029-1040 ◽  
Author(s):  
Stephanie K. Daniels ◽  
David M. Corey ◽  
Cristen L. Barnes ◽  
Nikki M. Faucheaux ◽  
Daniel H. Priestly ◽  
...  

It is unclear whether the cortical representation of swallowing is lateralized to the left cerebral hemisphere, right hemisphere, or bilaterally represented. As dysphagia is common in acute stroke, it is important to elucidate swallowing lateralization to facilitate earlier detection of stroke patients who may be at greater risk for dysphagia and aspiration. In this study, a modified dual task paradigm was designed to study laterality of swallowing in a group of 14 healthy, young, right-handed, male adults. The subjects were studied at baseline and with interference. Baseline conditions, performed separately, were continuous swallowing, finger tapping using the right and left index fingers, and word repetition. Interference tasks, including tapping with the right index finger, tapping with the left index finger, and word repetition, were completed with and without swallowing. Finger-tapping rate was measured, and x-ray samples of the swallowing task were taped to measure swallowing rate and volume swallowed. At baseline, the rate of tapping the right index finger was significantly faster than that of the left index finger. There was a significant decline in the tapping rates of both left and right index fingers with swallowing interference. The volume per swallow was significantly reduced during the interfering language task of silent repetition. These results offer partial support for a bilateral representation of swallowing as well as suggest an important left hemispheric contribution to swallowing. However, it cannot be concluded that the left hemisphere is more important than the right, as a comparable right hemisphere task was not studied.


Author(s):  
Sherma Zacharias ◽  
Andrew Kirk

ABSTRACT:Background:Constructional impairment following left vs. right hemisphere damage has been extensively studied using drawing tasks. A confounding factor in these studies is that right-handed patients with left hemisphere damage (LHD) are often forced by weakness to use their non-dominant (left) hand or hemiparetic dominant hand. Qualitative differences in the drawing characteristics of left and right hand drawings by normal subjects have not previously been characterized. The present study was undertaken to determine the qualitative differences between left and right hand drawings of normal subjects.Methods:Thirty right-handed, elderly subjects without a history of neurological disease were asked to draw, from memory, seven objects using the right and left hand. Half of the subjects were randomly assigned to draw with the left hand first, and half the right hand first. Right and left hand drawings were compared using a standardized scoring system utilized in several previous studies of drawing in focal and diffuse neurological disease. Each drawing was scored on eighteen criteria. Right and left hand drawing scores were then compared using the t-test for paired samples or the Wilcoxon matched-pairs testResults:Drawings made using the left hand were found to be significantly simpler, more tremulous and of poorer overall quality than drawings made by the same subjects using the right hand.Conclusions:The deficits found in left versus right hand drawings of normals are similar to those found in patients with LHD, suggesting that much of the drawing impairment seen following LHD is due to an elementary motor disturbance related to use of the non-dominant hand.


2012 ◽  
Vol 69 (8) ◽  
pp. 681-685
Author(s):  
Natasa Djukic-Macut ◽  
Slobodan Malobabic ◽  
Natalija Stefanovic ◽  
Predrag Mandic ◽  
Tatjana Filipovic ◽  
...  

Background/Aim. Both superior parietal lobule (SPL) of dorsolateral hemispheric surface and precuneus (PEC) of medial surface are the parts of posterior parietal cortex. The aim of this study was to determine the numerical density (NV) of pyramidal neurons in the layer V of SPL and PEC and their potential differences. Methods. From 20 (40 hemispheres) formaline fixed human brains (both sexes; 27- 65 years) tissue blocks from SPL and PEC from the left and right hemisphere were used. According to their size the brains were divided into two groups, the group I with the larger left (15 brains) and the group II with the larger right hemisphere (5 brains). Serial Nissl sections (5 ?m) of the left and right SPL and PEC were used for stereological estimation of NV of the layer V pyramidal neurons. Results. NV of pyramidal neurons in the layer V in the left SPL of brains with larger left hemispheres was significantly higher than in the left SPL of brains with larger right hemisphere. Comparing sides in brains with larger left hemisphere, the left SPL had higher NV than the right one, and then the left PEC, and the right SPL had significantly higher NV than the right PEC. Comparing sides in brains with the larger right hemisphere, the left SPL had significantly higher NV than left PEC, but the right SPL had significantly higher NV than left SPL and the right PEC. Conclusion. Generally, there is an inverse relationship of NV between the medial and lateral areas of the human posterior parietal cortex. The obtained values were different between the brains with larger left and right hemispheres, as well as between the SPL and PEC. In all the comparisons the left SPL had the highest values of NV of pyramidal neurons in the layer V (4771.80 mm-3), except in brains with the larger right hemisphere.


1995 ◽  
Vol 6 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Janet Metcalfe ◽  
Margaret Funnell ◽  
Michael S. Gazzaniga

Six experiments explored hemispheric memory differences in a patient who had undergone complete corpus callosum resection The right hemisphere was better able than the left to reject new events similar to originally presented materials of several types, including abstract visual forms, faces, and categorized lists of words Although the left hemisphere is capable of mental manipulation, imagination, semantic priming, and complex language production, these functions are apparently linked to memory confusions—confusions less apparent in the more literal right hemisphere Differences between the left and right hemispheres in memory for new schematically consistent or categorically related events may provide a source of information allowing people to distinguish between what they actually witnessed and what they only inferred


Sign in / Sign up

Export Citation Format

Share Document