Dynamical Evolution of Globular Clusters with Mass Spectrum

1991 ◽  
Vol 9 (1) ◽  
pp. 41-44
Author(s):  
Hyung Mok Lee

AbstractWe present a series of numerical models describing the dynamical evolution of globular clusters with a mass spectrum, based on integration of the Fokker-Planck equation. We include three-body binary heating and a steady galactic tidal field. A wide range of initial mass functions is adopted and the evolution of the mass function is examined. The mass function begins to change appreciably during the post-collapse expansion phase due to the selective evaporation of low mass stars through the tidal boundary. One signature of highly evolved clusters is thus the significant flattening of the mass function. The age (in units of the half-mass relaxation time) increases very rapidly beyond about 100 signifying the final stage of cluster disruption. This appears to be consistent with the sharp cut-off of half-mass relaxation times at near 108 years for the Galactic globular clusters.

2003 ◽  
Vol 211 ◽  
pp. 215-222
Author(s):  
Guido De Marchi

In spite of all the attempts to find them, no one has yet detected any brown dwarf in a globular cluster. Although powerful instruments such as the VLT and Advanced Camera could further push the frontiers of this search, globular clusters will probably hold tight to their secrets for a while longer. Nonetheless, the search for very low mass stars in globular clusters has taught us a lot about their original mass distribution (IMF) and its evolution in time. I shall review the results of an investigation carried out over what is presently the largest, most homogeneous sample, and discuss the reasons suggesting that: 1. dynamical evolution (internal and external) has reshaped the cluster mass function over time, but the imprint of the IMF is still visible; 2. the IMF appears to vary very little from cluster to cluster; 3. the most likely functional form of the IMF is that of a power law that rises to a peak at ˜ 0.3 M⊙ and tapers off at smaller masses.


2015 ◽  
Vol 12 (S316) ◽  
pp. 257-258
Author(s):  
Andreas H. W. Küpper ◽  
Akram H. Zonoozi ◽  
Hosein Haghi ◽  
Nora Lützgendorf ◽  
Steffen Mieske ◽  
...  

AbstractOuter-halo globular clusters show large half-light radii and flat stellar mass functions, depleted in low-mass stars. Using N-body simulations of globular clusters on eccentric orbits within a Milky Way-like potential, we show how a cluster’s half-mass radius and its mass function develop over time. The slope of the central mass function flattens proportionally to the amount of mass a cluster has lost, and the half-mass radius grows to a size proportional to the average strength of the tidal field. The main driver of these processes is mass segregation of dark remnants. We conclude that the extended, depleted clusters observed in the Milky Way must have had small half-mass radii in the past, and that they expanded due to the weak tidal field they spend most of their lifetime in. Moreover, their mass functions must have been steeper in the past but flattened significantly as a cause of mass segregation and tidal mass loss.


2009 ◽  
Vol 5 (S266) ◽  
pp. 357-360
Author(s):  
Eduardo Balbinot ◽  
Basílio X. Santiago ◽  
Eduardo Bica ◽  
Charles Bonatto

AbstractWe present photometry for the globular cluster NGC 6642 using the F606W and F814W filters with the ACS/WFC third-generation camera aboard the Hubble Space Telescope. The colour–magnitude diagram shows sources reaching ≈ 6 mag below the turnoff in mF606W. Theoretical isochrone fitting was performed and evolutionary parameters were obtained, including the metallicity [Fe/H] = −1.80 ± 0.2 dex and age, log(age/yr) = 10.14 ± 0.05. We confirm that NGC 6642 is located in the Galactic bulge, at a distance of d⊙ = 8.05±0.66 kpc and suffers from a reddening of E(B − V) = 0.46 ± 0.02 mag. These values are in general agreement with those of previous authors. Completeness-corrected luminosity and mass functions were obtained for different annuli centred on NGC 6642. Their spatial variation indicates the existence of mass segregation and depletion of low-mass stars. Most striking is the inverted shape of the mass function itself, with an increase in stellar numbers as a function of increasing mass. This has been observed previously in other globular clusters and is also the result of N-body simulations of stellar systems which have reached ≃90% of their lifetime and are subjected to strong tidal effects. We thus conclude that NGC 6642 is a very old, highly evolved globular cluster. Its current location close to perigalacticon, at only 1.4 kpc from the Galactic Centre, may contribute to this high level of dynamical evolution and stellar depletion.


2003 ◽  
Vol 208 ◽  
pp. 61-70
Author(s):  
Ralf S. Klessen

Star formation is intimately linked to the dynamical evolution of molecular clouds. Turbulent fragmentation determines where and when protostellar cores form, and how they contract and grow in mass via accretion from the surrounding cloud material. Using numerical models of self-gravitating supersonic turbulence, efficiency, spatial distribution and timescale of star formation in turbulent interstellar clouds are estimated. Turbulence that is not continuously replenished or that is driven on large scales leads to a rapid formation of stars in a clustered mode, whereas interstellar turbulence that carries most energy on small scales results in isolated star formation with low efficiency. The clump mass spectrum for models of pure hydrodynamic turbulence is steeper than the observed one, but gets close to it when gravity is included. The mass spectrum of dense cores is log-normal for decaying and large-wavelength turbulence, similar to the IMF, but is too flat in the case of small-scale turbulence. The three-dimensional models of molecular cloud fragmentation can be combined with dynamical pre-main sequence stellar evolution calculations to obtain a consistent description of all phases of the star formation process. First results are reported for a one solar mass protostar.


2007 ◽  
Vol 3 (S246) ◽  
pp. 394-402
Author(s):  
Stephen E. Zepf

AbstractThis paper reviews some of the observational properties of globular cluster systems, with a particular focus on those that constrain and inform models of the formation and dynamical evolution of globular cluster systems. I first discuss the observational determination of the globular cluster luminosity and mass function. I show results from new very deep HST data on the M87 globular cluster system, and discuss how these constrain models of evaporation and the dynamical evolution of globular clusters. The second subject of this review is the question of how to account for the observed constancy of the globular cluster mass function with distance from the center of the host galaxy. The problem is that a radial trend is expected for isotropic cluster orbits, and while the orbits are observed to be roughly isotropic, no radial trend in the globular cluster system is observed. I review three extant proposals to account for this, and discuss observations and calculations that might determine which of these is most correct. The final subject is the origin of the very weak mass-radius relation observed for globular clusters. I discuss how this strongly constrains how globular clusters form and evolve. I also note that the only viable current proposal to account for the observed weak mass-radius relation naturally effects the globular cluster mass function, and that these two problems may be closely related.


1996 ◽  
Vol 174 ◽  
pp. 377-378
Author(s):  
P.-Y. Longaretti ◽  
R. Taillet ◽  
P. Salati

Searches of low-mass stars have become possible in globular clusters, and the first results suggest that the mass function turns up below ∼ 0.4 M⊙ (Fahlman et al. 1989; Richer et al., 1990; Richer et al. 1991; G. Piotto, these proceedings). This conclusion is independently supported by the non-parametric dynamical analysis of four clusters by Gebhardt and Fisher 1995.


2007 ◽  
Vol 3 (S246) ◽  
pp. 36-40
Author(s):  
H. Baumgardt ◽  
P. Kroupa

AbstractWe present new results on the dynamical evolution and dissolution of star clusters due to residual gas expulsion and the effect this has on the mass function and other properties of star cluster systems. To this end, we have carried out a large set of N-body simulations, varying the star formation efficiency, gas expulsion time scale and strength of the external tidal field, obtaining a three-dimensional grid of models which can be used to predict the evolution of individual star clusters or whole star cluster systems by interpolating between our runs. When applied to the Milky Way globular cluster system, we find that gas expulsion is the main dissolution mechanism for star clusters, destroying about 80% of all clusters within a few 10s of Myers. Together with later dynamical evolution, it seems possible to turn an initial power-law mass function into a log-normal one with properties similar to what has been observed for the Milky Way globular clusters.


2020 ◽  
Vol 494 (4) ◽  
pp. 4713-4729 ◽  
Author(s):  
Jayanand Maurya ◽  
Y C Joshi

ABSTRACT We present UBVRcIc photometric study of three intermediate age open star clusters NGC 381, NGC 2360, and Berkeley 68 (Be 68). We examine the cluster membership of stars using recently released Gaia DR2 proper motions and obtain a total of 116, 332, and 264 member stars in these three clusters. The mean reddening of E(B − V) = 0.36 ± 0.04, 0.08 ± 0.03, and 0.52 ± 0.04 mag is found in the direction of these clusters where we observe an anomalous reddening towards NGC 381. We fitted the solar metallicity isochrones to determine age and distance of the clusters which are found to be log(Age) = 8.65 ± 0.05, 8.95 ± 0.05, and 9.25 ± 0.05 yr with the respective distance of 957 ± 152, 982 ± 132, and 2554 ± 387 pc for the clusters NGC 381, NGC 2360, and Be 68. A two-stage power law in the mass function (MF) slope is observed in the cluster NGC 381, however, we observe only a single MF slope in the clusters NGC 2360 and Be68. To study a possible spatial variation in the slope of MF, we estimate slopes separately in the inner and the outer regions of these clusters and notice a steeper slope in outer region. The dynamic study of these clusters reveals deficiency of low-mass stars in their inner regions suggesting the mass segregation process in all these clusters. The relaxation times of 48.5, 78.9, and 87.6 Myr are obtained for the clusters NGC 381, NGC 2360, and Be 68, respectively, which are well below to their respective ages. This suggests that all the clusters are dynamically relaxed.


1996 ◽  
Vol 174 ◽  
pp. 293-302
Author(s):  
H. M. Lee

We have examined the dynamical evolution of stellar system containing massive remnant stellar component. If individual mass of remnant stars is much heavier than that of normal stars which comprise most of the mass in the cluster, remnant stars quickly form a subsystem within the core of cluster of ordinary stars. The subsystem evolves on its own relaxation time scale which is very short. However, the post collapse expansion driven by the three-body binary heating becomes very slow because the expansion energy of the compact subcluster can be easily absorbed by surrounding cluster. The gravitational radiation can lead to the merger of binaries when binaries become very hard. A central seed black hole might form if repeated merger becomes very efficient. Otherwise, relatively stable two-component phase of central compact cluster of remnant stars surrounded by larger cluster of low mass stars would last for a long time.


2019 ◽  
Vol 14 (S351) ◽  
pp. 204-207
Author(s):  
Jun Kumamoto ◽  
Michiko S. Fujii ◽  
Ataru Tanikawa

AbstractGravitational wave direct detections suggest that 30 M⊙ binary black holes (BBHs) commonly exist in the universe. One possible formation scenario of such BBHs is dynamical three-body encounters in dense star clusters. We performed a series of direct N-body simulations with a mass of 2500 and 10000 M⊙ and found a new channel for the formation of BBHs which is dominant in open clusters. In open clusters, the core-collapse time is shorter than in globular clusters, and therefore massive main-sequence (MS) binaries can form before they evolve to BHs. These MS binaries experience common envelope evolution and evolve to hard BBHs, which can merge within the Hubble time. The number of BBH mergers per unit mass obtained from our simulations reached 20–50 % of that for globular clusters, assuming an initial cluster mass function. Thus, open clusters can be a dominant formation site of hard BBHs.


Sign in / Sign up

Export Citation Format

Share Document