Self-regulation and social and behavioral functioning following childhood traumatic brain injury

2006 ◽  
Vol 12 (5) ◽  
pp. 609-621 ◽  
Author(s):  
KALAICHELVI GANESALINGAM ◽  
ANN SANSON ◽  
VICKI ANDERSON ◽  
KEITH OWEN YEATES

This study examined the impact of childhood traumatic brain injury (TBI) on self-regulation and social and behavioral functioning, and the role of self-regulation as a predictor of children's social and behavioral functioning. Participants included 65 children with moderate to severe TBI and 65 children without TBI, all between 6 and 11 years of age. Self-regulation and social and behavioral functioning were assessed 2 to 5 years following injury. Children with TBI displayed deficits in self-regulation and social and behavioral functioning, after controlling for socioeconomic status (SES), although the magnitude of the deficits was not related to injury severity. Self-regulation accounted for significant variance in children's social and behavioral functioning, after controlling for SES and group membership. Self-regulation may be an important determinant of children's social and behavioral functioning following TBI. (JINS, 2006,12, 609–621.)

2007 ◽  
Vol 8 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Suzanne L. Barker-Collo

AbstractTraumatic brain injury (TBI) is a leading cause of death and morbidity in children and can result in cognitive, behavioural, social and emotional difficulties that may impact quality of life. This study examined the impact of mild, moderate, and severe childhood TBI, when compared to severe orthopaedic injury, on behaviour as measured by the Child Behavior Checklist (CBCL) in a sample of 74 children with TBI and 13 with orthopaedic injury aged 4 to 13 years at the time of injury. Correlational analyses revealed that within the TBI sample increased anxiety/depression and somatisation were related to increased age at the time of injury and shorter inpatient hospital stay. Increased age was also related to increased parental reports of attention problems; while increased hospital stay was related to increased withdrawal and thought problems. Symptomatology was within normal limits for all groups, approaching the borderline clinical range in the moderate TBI group for somatic symptoms and in the severe TBI group for thought and attention problems. Those with severe TBI had more thought and attention problems, and to a lesser extent social problems, than those with mild or moderate TBI; while those with moderate TBI had the highest levels of somatic and anxious–depressed symptoms. The only scale where performance seemed to increase in relation to injury severity was the attention problems scale. It is suggested that the findings for those with moderate TBI reflect increased awareness of one's own vulnerability/mortality, with the implication that issues such as grief, loss, and mortality may need to be addressed therapeutically.


Neurosurgery ◽  
2013 ◽  
Vol 73 (2) ◽  
pp. 305-311 ◽  
Author(s):  
Rahul Raj ◽  
Jari Siironen ◽  
Riku Kivisaari ◽  
Juha Hernesniemi ◽  
Päivi Tanskanen ◽  
...  

Abstract BACKGROUND: Markers of coagulation have shown to have important value in predicting traumatic brain injury outcome. OBJECTIVE: To externally validate and investigate the role of markers of coagulation for outcome prediction by using the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) model while adjusting for overall injury severity. METHODS: A retrospective chart analysis of traumatic brain injury patients admitted to Helsinki University Central Hospital between 2009 and 2010 was performed. Outcome was estimated by using the criteria of the IMPACT model. Admission international normalized ratio (INR) and platelet count were used as markers of coagulation. Overall injury severity was categorized with the injury severity score (ISS). Variables were added to the calculated IMPACT risk, generating new models. Model performance was assessed by analyzing and comparing the area under the curve (AUC) of the models. RESULTS: For 342 included patients, 6-month mortality was 32% and unfavorable neurological outcome was 36%. Patients with a poor outcome had lower platelets and higher INR and ISS than those with good outcome (P < .001). The IMPACT model had an AUC of 0.85 for predicting mortality and 0.81 for neurological outcome. Addition of INR but not ISS or platelets to the IMPACT predicted risk improved the predictive validity for mortality ([INCREMENT]AUC 0.02, P = .034) but not neurological outcome ([INCREMENT]AUC 0.00, P = .401). In multivariate analysis, INR remained significant for mortality but not for neurological outcome when adjusting for IMPACT risk and ISS (P = .012). CONCLUSION: The IMPACT model showed excellent performance, and INR was an independent predictor for mortality, independent of overall injury severity.


2017 ◽  
Vol 32 (5) ◽  
pp. 692-704 ◽  
Author(s):  
Camille Chesnel ◽  
Claire Jourdan ◽  
Eleonore Bayen ◽  
Idir Ghout ◽  
Emmanuelle Darnoux ◽  
...  

Objective: To evaluate the patient’s awareness of his or her difficulties in the chronic phase of severe traumatic brain injury (TBI) and to determine the factors related to poor awareness. Design/Setting/Subjects: This study was part of a larger prospective inception cohort study of patients with severe TBI in the Parisian region (PariS-TBI study). Intervention/Main measures: Evaluation was carried out at four years and included the Brain Injury Complaint Questionnaire (BICoQ) completed by the patient and his or her relative as well as the evaluation of impairments, disability and quality of life. Results: A total of 90 patient-relative pairs were included. Lack of awareness was measured using the unawareness index that corresponded to the number of discordant results between the patient and relative in the direction of under evaluation of difficulties by the patient. The only significant relationship found with lack of awareness was the subjective burden perceived by the relative (Zarit Burden Inventory) ( r = 0.5; P < 0.00001). There was no significant relationship between lack of awareness and injury severity, pre-injury socio-demographic data, cognitive impairments, mood disorders, functional independence (Barthel index), global disability (Glasgow Outcome Scale), return to work at four years or quality of life (Quality Of Life after Brain Injury scale (QOLIBRI)). Conclusion: Lack of awareness four years post severe TBI was not related to the severity of the initial trauma, sociodemographic data, the severity of impairments, limitations of activity and participation, or the patient’s quality of life. However, poor awareness did significantly influence the weight of the burden perceived by the relative.


2015 ◽  
Vol 122 (1) ◽  
pp. 211-218 ◽  
Author(s):  
Nils Petter Rundhaug ◽  
Kent Gøran Moen ◽  
Toril Skandsen ◽  
Kari Schirmer-Mikalsen ◽  
Stine B. Lund ◽  
...  

OBJECT The influence of alcohol is assumed to reduce consciousness in patients with traumatic brain injury (TBI), but research findings are divergent. The aim of this investigation was to study the effects of different levels of blood alcohol concentration (BAC) on the Glasgow Coma Scale (GCS) scores in patients with moderate and severe TBI and to relate the findings to brain injury severity based on the admission CT scan. METHODS In this cohort study, 265 patients (age range 16–70 years) who were admitted to St. Olavs University Hospital with moderate and severe TBI during a 7-year period were prospectively registered. Of these, 217 patients (82%) had measured BAC. Effects of 4 BAC groups on GCS score were examined with ordinal logistic regression analyses, and the GCS scores were inverted to give an OR > 1. The Rotterdam CT score based on admission CT scan was used to adjust for brain injury severity (best score 1 and worst score 6) by stratifying patients into 2 brain injury severity groups (Rotterdam CT scores of 1–3 and 4–6). RESULTS Of all patients with measured BAC, 91% had intracranial CT findings and 43% had BAC > 0 mg/dl. The median GCS score was lower in the alcohol-positive patients (6.5, interquartile range [IQR] 4–10) than in the alcohol-negative patients (9, IQR 6–13; p < 0.01). No significant differences were found between alcohol-positive and alcohol-negative patients regarding other injury severity variables. Increasing BAC was a significant predictor of lower GCS score in a dose-dependent manner in age-adjusted analyses, with OR 2.7 (range 1.4–5.0) and 3.2 (range 1.5–6.9) for the 2 highest BAC groups (p < 0.01). Subgroup analyses showed an increasing effect of BAC group on GCS scores in patients with Rotterdam CT scores of 1–3: OR 3.1 (range 1.4–6.6) and 6.7 (range 2.7–16.7) for the 2 highest BAC groups (p < 0.01). No such relationship was found in patients with Rotterdam CT scores of 4–6 (p = 0.14–0.75). CONCLUSIONS Influence of alcohol significantly reduced the GCS score in a dose-dependent manner in patients with moderate and severe TBI and with Rotterdam CT scores of 1–3. In patients with Rotterdam CT scores of 4–6, and therefore more CT findings indicating increased intracranial pressure, the brain injury itself seemed to overrun the depressing effect of the alcohol on the CNS. This finding is in agreement with the assumption of many clinicians in the emergency situation.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Daniel W Spaite ◽  
Chengcheng Hu ◽  
Bentley J Bobrow ◽  
Bruce J Barnhart ◽  
Vatsal Chikani ◽  
...  

Background: In hospital-based studies, hypotension (HT, SBP <90) is more likely to occur in multisystem traumatic brain injury (MTBI) than isolated (ITBI). However, there are few EMS studies on this issue. Hypothesis: Prehospital HT is associated with differential effects in MTBI and ITBI and these effects are influenced by the severity of primary brain injury. Methods: Inclusion: TBI cases in the EPIC Study (NIH 1R01NS071049) before TBI guideline implementation (1/07-3/14). ITBI: Major TBI cases (CDC Barell Matrix Type 1) that had no injury with ICD9-based Regional Severity Score [RSS (AIS equivalent)] ≥3 in any other body region. MTBI: Type 1 TBI plus at least one non-head region injury with RSS ≥3. Results: Included were 13,435 cases [Excl: age <10 (5.9%), missing data (6.2%)]. 10,374 (77.2%) were ITBI, 3061 (22.8%) MTBI. Mortality: ITBI: 7.7% (797/10,374), MTBI: 19.2% (587/3061, p<0.0001). Prehospital HT occurred 3.5 times more often in MTBI (14.8%, 453/3061 vs 4.2%, 437/10,374; p<0.0001). Among HT cases, 40.8% (185/453) with MTBI died vs 30.9% with ITBI (135/437; p<0.0001). In the hypotensive moderate/severe TBI cohort (RSS-Head 3/4), MTBI mortality was 2.4 times higher (17.2%, 40/232) than ITBI (7.1%, 17/240, p = 0.001). However, in the hypotensive very/extremely severe TBI group (RSS-Head 5/6), mortality was almost identical in MTBI (73.4%, 141/192) and ITBI (72.1%, 116/161, p = 0.864). Conclusion: Among major TBI patients with prehospital HT, those with MTBI were much more likely to die than those with ITBI. However, this association varied dramatically with TBI severity. In mod/severe TBI cases with HT, MTBI mortality was 2.4 times higher than in ITBI. In contrast, in very/extremely severe TBI with HT, there was no identifiable mortality difference. Thus, in cases with substantial potential to survive the primary brain injury (mod/severe), outcome is markedly worse in patients with multisystem injuries. However, in very/extremely severe TBI, non-head region injuries have no apparent association with mortality. This may be because the TBI is the primary factor leading to death in these cases. The main EPIC study is evaluating whether this severity-based difference in “effect” has implications for TBI guideline treatment effectiveness.


Brain Injury ◽  
2015 ◽  
Vol 29 (13-14) ◽  
pp. 1648-1653 ◽  
Author(s):  
Pål Rønning ◽  
Per Ole Gunstad ◽  
Nils-Oddvar Skaga ◽  
Iver Arne Langmoen ◽  
Knut Stavem ◽  
...  

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012222
Author(s):  
Emily L Dennis ◽  
Karen Caeyenberghs ◽  
Kristen R Hoskinson ◽  
Tricia L Merkley ◽  
Stacy J Suskauer ◽  
...  

Objective:Our study addressed aims: (1) test the hypothesis that moderate-severe TBI in pediatric patients is associated with widespread white matter (WM) disruption; (2) test the hypothesis that age and sex impact WM organization after injury; and (3) examine associations between WM organization and neurobehavioral outcomes.Methods:Data from ten previously enrolled, existing cohorts recruited from local hospitals and clinics were shared with the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric msTBI working group. We conducted a coordinated analysis of diffusion MRI (dMRI) data using the ENIGMA dMRI processing pipeline.Results:Five hundred and seven children and adolescents (244 with complicated mild to severe TBI [msTBI] and 263 controls) were included. Patients were clustered into three post-injury intervals: acute/subacute - <2 months, post-acute - 2-6 months, chronic - 6+ months. Outcomes were dMRI metrics and post-injury behavioral problems as indexed by the Child Behavior Checklist (CBCL). Our analyses revealed altered WM diffusion metrics across multiple tracts and all post-injury intervals (effect sizes ranging between d=-0.5 to -1.3). Injury severity is a significant contributor to the extent of WM alterations but explained less variance in dMRI measures with increasing time post-injury. We observed a sex-by-group interaction: females with TBI had significantly lower fractional anisotropy in the uncinate fasciculus than controls (𝞫=0.043), which coincided with more parent-reported behavioral problems (𝞫=-0.0027).Conclusions:WM disruption after msTBI is widespread, persistent, and influenced by demographic and clinical variables. Future work will test techniques for harmonizing neurocognitive data, enabling more advanced analyses to identify symptom clusters and clinically-meaningful patient subtypes.


2019 ◽  
Vol 85 (4) ◽  
pp. 370-375 ◽  
Author(s):  
Adel Elkbuli ◽  
Raed Ismail Narvel ◽  
Paul J. Spano ◽  
Valerie Polcz ◽  
Astrid Casin ◽  
...  

The effect of timing in patients requiring tracheostomy varies in the literature. The purpose of this study was to evaluate the impact of early tracheostomy on outcomes in trauma patients with and without traumatic brain injury (TBI). This study is a four-year review of trauma patients undergoing tracheostomy. Patients were divided into two groups based on TBI/non-TBI. Each group was divided into three subgroups based on tracheostomy timing: zero to three days, four to seven days, and greater than seven days postadmission. TBI patients were stratified by the Glasgow Coma Scale (GCS), and non-TBI patients were stratified by the Injury Severity Score (ISS). The primary outcome was ventilator-free days (VFDs). Significance was defined as P < 0.05. Two hundred eighty-nine trauma patients met the study criteria: 151 had TBI (55.2%) versus 138 (47.8%) non-TBI. There were no significant differences in demographics within and between groups. In TBI patients, statistically significant increases in VFDs were observed with GCS 13 to 15 for tracheostomies performed in four to seven versus greater than seven days ( P = 0.005). For GCS <8 and 8 to 12, there were significant increases in VFDs for tracheostomies performed at days 1 to 3 and 4 to 7 versus greater than seven days (P << 0.05 for both). For non-TBI tracheostomies, only ISS ≥ 25 with tracheostomies performed at zero to three days versus greater than seven days was associated with improved VFDs. Early tracheostomies in TBI patients were associated with improved VFDs. In trauma patients with no TBI, early tracheostomy was associated with improved VFDs only in patients with ISS ≥ 25. Future research studies should investigate reasons TBI and non-TBI patients may differ.


Author(s):  
Richard A. Bryant

One of the more hotly debated issues in the field of post-traumatic stress disorder (PTSD) is the role of traumatic brain injury (TBI), and particularly mild traumatic brain injury (mTBI). This topic became increasingly the focus of attention in the context of recent wars in Iraq and Afghanistan, where many troops suffered PTSD and mTBIs. Over three-quarters of injuries sustained in these conflicts arose from encounters with explosive devices, and accordingly it was often claimed that the “signature injuries” of the wars in Iraq and Afghanistan were both PTSD and mTBI. Clinicians and researchers have thus given renewed attention to the interplay of these two conditions. This chapter reviews definitional issues of PTSD and mTBI, how PTSD can develop after mTBI, the impact mTBI may have on stress responses, the distinctive role of postconcussive syndrome, and how to manage PTSD following mTBI.


2020 ◽  
Vol 9 (6) ◽  
pp. 1667 ◽  
Author(s):  
Cora Rebecca Schindler ◽  
Thomas Lustenberger ◽  
Mathias Woschek ◽  
Philipp Störmann ◽  
Dirk Henrich ◽  
...  

The inflammatory response plays an important role in the pathophysiology of multiple injuries. This study examines the effects of severe trauma and inflammatory response on markers of neuronal damage. A retrospective analysis of prospectively collected data in 445 trauma patients (Injury Severity Score (ISS) ≥ 16) is provided. Levels of neuronal biomarkers (calcium-binding Protein B (S100b), Enolase2 (NSE), glial fibrillary acidic protein (GFAP)) and Interleukins (IL-6, IL-10) in severely injured patients (with polytrauma (PT)) without traumatic brain injury (TBI) or with severe TBI (PT+TBI) and patients with isolated TBI (isTBI) were measured upon arrival until day 5. S100b, NSE, GFAP levels showed a time-dependent decrease in all cohorts. Their expression was higher after multiple injuries (p = 0.038) comparing isTBI. Positive correlation of marker level after concomitant TBI and isTBI (p = 0.001) was noted, while marker expression after PT appears to be independent. Highest levels of IL-6 and -10 were associated to PT und lowest to isTBI (p < 0.001). In all groups pro-inflammatory response (IL-6/-10 ratio) peaked on day 2 and at a lower level on day 4. Severe TBI modulates kinetic profile of inflammatory response by reducing interleukin expression following trauma. Potential markers for neuronal damage have a limited diagnostic value after severe trauma because undifferentiated increase.


Sign in / Sign up

Export Citation Format

Share Document