Epidermal Keratinocyte Differentiation is Disrupted in Mice Lacking The Full Length Extracellular Calcium-Sensing Receptor

1997 ◽  
Vol 3 (S2) ◽  
pp. 185-186
Author(s):  
László G. Kömüves ◽  
Jonathan D. Harris ◽  
Chrystal Ho ◽  
Daniel D. Bikle

The importance of the extracellular calcium-sensing receptor (CaR) in the stringent control of extracellular Ca2+ concentration is well established. However, the presence of CaR in tissues not directly involved in regulating mineral ion homeostasis suggests a role for CaR in local regulation of cellular functions. Although extracellular Ca2+ regulates the differentiation of keratinocytes, the role of CaR in the epidermis is not established. In this work using knockout mice lacking full length CaR, we sought to determine the role of CaR in epidermal differentiation.Dorsal skin of Casr−/− knockout mice lacking full length CaR, and Casr+/+ (wild type) control mice, aged 4 to 7 days after birth was fixed in 4% formaldehyde in PBS, and in 2.5% glutaraldehyde and 2% formaldehyde in 0.1 M cacodylate buffer. The samples were embedded in paraffin (for immunohistochemistry and for in situ hybridization) or in Spurr’s or LR White resins. Digoxigenin labeled antisense and sense RNA probes for loricrin and filaggrin were used for in situ hybridization.

2002 ◽  
Vol 192 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Laszlo Komuves ◽  
Yuko Oda ◽  
Chia-ling Tu ◽  
Wen Han Chang ◽  
Chrystal L. Ho-Pao ◽  
...  

2001 ◽  
Vol 280 (2) ◽  
pp. C382-C393 ◽  
Author(s):  
Toru Yamaguchi ◽  
Naibedya Chattopadhyay ◽  
Olga Kifor ◽  
Chianping Ye ◽  
Peter M. Vassilev ◽  
...  

We have previously shown the expression of the extracellular calcium (Cao 2+)-sensing receptor (CaR) in osteoblast-like cell lines, and others have documented its expression in sections of murine, bovine, and rat bone. The existence of the CaR in osteoblasts remains controversial, however, since some studies have failed to document its expression in the same osteoblast-like cell lines. The goals of the present study were twofold. 1) We sought to determine whether the CaR is expressed in the human osteoblast-like cell line, MG-63, which has recently been reported by others not to express this receptor. 2) We investigated whether the CaR, if present in MG-63 cells, is functionally active, since most previous studies have not proven the role of the CaR in mediating known actions of Cao 2+ on osteoblast-like cells. We used immunocytochemistry and Western blotting with the specific, affinity-purified anti-CaR antiserum 4637 as well as Northern blot analysis and RT-PCR using a riboprobe and PCR primers specific for the human CaR, respectively, to show readily detectable CaR protein and mRNA expression in MG-63 cells. Finally, we employed the patch-clamp technique to show that an elevation in Cao 2+ as well as the specific, allosteric CaR activator NPS R-467 (0.5 μM), but not its less active stereoisomer NPS S-467 (0.5 μM), activate an outward K+ channel in MG-63 cells, strongly suggesting that the CaR in MG-63 cells is not only expressed but is functionally active.


2014 ◽  
Vol 306 (4) ◽  
pp. R211-R221 ◽  
Author(s):  
Raymond W. M. Kwong ◽  
Dan Auprix ◽  
Steve F. Perry

The involvement of the calcium-sensing receptor (CaSR) in Ca2+ homeostasis was investigated in larval zebrafish, Danio rerio. The expression of CaSR mRNA was first observed at 3 h posfertilization (hpf) and increased with development until plateauing at ∼48 hpf. At 4 dpf, CaSR mRNA was increased in fish acclimated to low Ca2+ water (25 μM vs. 250 μM in normal water). Using immunohistochemistry and confocal microscopy, we demonstrated that the CaSR is expressed in the olfactory epithelium, neuromasts, ionocytes on the yolk sac epithelium, and corpuscles of Stannius. Results of double immunohistochemistry and/or in situ hybridization indicated that the CaSR is localized to a subset of mitochondrion-rich ionocytes enriched with Na+/K+-ATPase and epithelial Ca2+ channel ( ecac). Translational knockdown of the CaSR prevented 4 dpf larvae from regulating whole body Ca2+ levels when exposed to a low Ca2+ environment. Further, the increases in ecac mRNA expression and Ca2+ influx, normally associated with exposure to low-Ca2+ water, were prevented by CaSR knockdown. These findings demonstrate that larval zebrafish lacking the CaSR lose their ability to regulate Ca2+ when confronted with a low-Ca2+ environment. Results from real-time PCR suggested that the mRNA expression of the hypocalcemic hormone stanniocalcin ( stc-1) remained elevated in the CaSR morphants following acclimation to low-Ca2+ water. Overall, the results suggest that the CaSR is critical for Ca2+ homeostasis in larval zebrafish exposed to low environmental Ca2+ levels, possibly owing to its modulation of stanniocalcin mRNA expression.


2016 ◽  
Vol 310 (6) ◽  
pp. F518-F533 ◽  
Author(s):  
J. A. Z. Graca ◽  
M. Schepelmann ◽  
S. C. Brennan ◽  
J. Reens ◽  
W. Chang ◽  
...  

The calcium-sensing receptor (CaSR) was cloned over 20 years ago and functionally demonstrated to regulate circulating levels of parathyroid hormone by maintaining physiological serum ionized calcium concentration ([Ca2+]). The receptor is highly expressed in the kidney; however, intrarenal and intraspecies distribution remains controversial. Recently, additional functions of the CaSR receptor in the kidney have emerged, including parathyroid hormone-independent effects. It is therefore critical to establish unequivocally the localization of the CaSR in the kidney to relate this to its proposed physiological roles. In this study, we determined CaSR expression in mouse, rat, and human kidneys using in situ hybridization, immunohistochemistry (using 8 different commercially available and custom-made antibodies), and proximity ligation assays. Negative results in mice with kidney-specific CaSR ablation confirmed the specificity of the immunohistochemistry signal. Both in situ hybridization and immunohistochemistry showed CaSR expression in the thick ascending limb, distal tubule, and collecting duct of all species, with the thick ascending limb showing the highest levels. Within the collecting ducts, there was significant heterogeneity of expression between cell types. In the proximal tubule, lower levels of immunoreactivity were detected by immunohistochemistry and proximity ligation assays. Proximity ligation assays were the only technique to demonstrate expression within glomeruli. This study demonstrated CaSR expression throughout the kidney with minimal discrepancy between species but with significant variation in the levels of expression between cell and tubule types. These findings clarify the intrarenal distribution of the CaSR and enable elucidation of the full physiological roles of the receptor within this organ.


2011 ◽  
Vol 37 (5) ◽  
pp. 269-278 ◽  
Author(s):  
Brenda Finney ◽  
William J. Wilkinson ◽  
Lydia Searchfield ◽  
Martin Cole ◽  
Stacey Bailey ◽  
...  

Biomolecules ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 69 ◽  
Author(s):  
Gordon L. Klein

The aim of this mini-review is to discuss the role of calcium in the process of cytokine-mediated bone resorption in an effort to understand the role circulating calcium may play in the resorption of bone. The liberation of calcium and possibly phosphorus and magnesium by bone resorption may sustain and intensify the inflammatory response. We used a burn injury setting in humans and a burn injury model in animals in order to examine the effects on the bone of the systemic inflammatory response and identified the parathyroid calcium-sensing receptor as the mediator of increasing bone resorption, hence higher interleukin (IL)-1 production, and decreasing bone resorption, hence the lowering of circulating ionized calcium concentration. Thus, extracellular calcium, by means of the parathyroid calcium-sensing receptor, is able to modulate inflammation-mediated resorption.


Sign in / Sign up

Export Citation Format

Share Document