Measurement Of Interfacial Segregation In Aluminum-Magnesium Alloys Using A Feg-Tem And Eds

1999 ◽  
Vol 5 (S2) ◽  
pp. 160-161
Author(s):  
J.S. Vetrano ◽  
C.H. Henager

Aluminum-magnesium alloys are currently being utilized in lightweight automotive components and their good strength and weldability characteristics has made them candidates for increased use. The primary problem with using aluminum alloys for automotive applications is their relatively low formability. Superplastic forming (SPF) is a viable method for producing high elongations and is enabled in these alloys by the manipulation of intermetallic particles (e.g. Al3Sc) that restrict grain growth at the high homologous temperatures necessary for this technique [1]. SPF of Al-Mg-Mn-Sc alloy has yielded elongations of over 600% [2]. However, Al3Sc particles age rapidly at high temperatures which can reduce their strengthening characteristics following deformation. It has been experimentally observed that the addition of Zr to Al-Sc alloys retards the aging of the Al3Sc precipitates [3]. This is beneficial for high temperature conditions like superplastic forming and welding. In this study we examine the location of Zr in the strupturc and how it may be inhibiting particle aging.

2003 ◽  
Vol 18 (5) ◽  
pp. 687-717 ◽  
Author(s):  
Henry Hu ◽  
Alfred Yu ◽  
Naiyi Li ◽  
John E. Allison

2020 ◽  
Vol 1 (2) ◽  
pp. 81-85
Author(s):  
R Motrichuk ◽  
O Kyrychenko ◽  
O Dibrova ◽  
V Vashchenko ◽  
S Kolinko

The results of experimental research of processes of ignition and combustion of particles of aluminum and magnesium alloys in gaseous purges of high-temperature decomposition of solid pyrotechnic fuels leading to their fire explosive hazardous development are presented. The relevance of these research is due to the wide scope of application of pyrotechnic products based on pyrotechnic mixtures of powders of aluminum-magnesium alloys with additives of organic substances, in particular applications in military technology and use in various industries related to the rotation of solid pyrotechnic equipment. Accordingly, in case of fire at facilities where pyrotechnic products are kept or during their transportation there exists the risk of ignition of pyrotechnic mixtures with different acceleration of their subsequent combustion process and destruction of the pyrotechnic products. As a result, high-temperature combustion products are formed, which are fire hazardous to the surrounding environment. Based on the foregoing, it is necessary to obtain data on the regularities of ignition and combustion particles of aluminum-magnesium alloys, which determines the ability to predict the properties of fire hazard pyrotechnic mixtures.  As a result of conducted research, data on the ignition and combustion of particles of aluminum-magnesium alloys was obtained, in particular, the dependence of the delay time of the particles of aluminum-magnesium alloys on their chemical composition was obtained, the data on the process of combustion of particles of aluminum-magnesium alloys was obtained, the data on the effect of additives to aluminum-magnesium alloys was obtained.


2007 ◽  
Vol 551-552 ◽  
pp. 211-217 ◽  
Author(s):  
Jean Jacques Blandin

Superplastic forming (SPF) of magnesium alloys has received increasing attention in the recent past. The aim of this presentation is to review recent works dealing with SPF of Mg alloys with a three-fold objective: i. How to produce fine or ultra fine grained (UFG) microstructures? ii. Are there specifities in superplastic deformation mechanisms? iii. How SPF Mg alloys resist to cavitation? Deformation mechanisms as well as damage variations in the superplastic regime will be preferentially discussed in relation with grain size, content in intermetallic particles and diffusion kinetics. For the sake of illustration, some results concerning the superplastic behaviour of UFG magnesium alloys produced by severe plastic deformation will be presented since such microstructures exhibit particularly attractive superplastic properties at quite low temperatures.


2020 ◽  
pp. 12-18
Author(s):  
F.A. Urazbahtin ◽  
A.YU. Urazbahtina

A multifactor mathematical model of the welding process of products from aluminum-magnesium alloys, consisting of 71 indicators that assess the quality of the weld, the welding process, costs, equipment operation and quality of the welded material. The model can be used to control and optimize the welding process of products from aluminum-magnesium alloys. Keywords welding, products, aluminum-magnesium alloy, indicators, process parameters, welding equipment, welding materials, electrode sharpening, lining [email protected]


Author(s):  
Aditya Deshpande ◽  
Sean B. Leen ◽  
Thomas H. Hyde

This paper describes high temperature cyclic and creep relaxation testing and modelling of a high nickel-chromium material (XN40F) for application to the life prediction of superplastic forming (SPF) tools. An experimental test programme to characterise the high temperature cyclic elastic-plastic-creep behaviour of the material over a range of temperatures between 20°C and 900°C is described. The objective of the material testing is the development of a high temperature material model for cyclic analyses and life prediction of superplastic forming (SPF) dies for SPF of titanium aerospace components. A two-layer visco-plasticity model which combines both creep and combined isotropic-kinematic plasticity is chosen to represent the material behaviour. The process of material constant identification for this model is presented and the predicted results are compared with the rate-dependent (isothermal) experimental results. The temperature-dependent material model is furthermore applied to simulative thermo-mechanical fatigue (TMF) tests, designed to represent the temperature and stress-strain cycling associated with the most damaging phase of the die cycle. The model is shown to give good correlation with the test data, thus vindicating future application of the material model in thermo-mechanical analyses of SPF dies, for distortion and life prediction.


Sign in / Sign up

Export Citation Format

Share Document