Comparative Mechanical Properties of AE42 and AJ52x High-Temperature Diecast Magnesium Alloys for Elevated Temperature Applications

Author(s):  
Pierre Labelle ◽  
Don Argo ◽  
Mirihban Pekguleryuz ◽  
Yemi Fasoyinu ◽  
Real Bouchard ◽  
...  
Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


2014 ◽  
Vol 33 (3) ◽  
pp. 193-200 ◽  
Author(s):  
Jiteng Wang ◽  
Juan Wang ◽  
Yajiang Li ◽  
Deshuang Zheng

AbstractMolybdenum and molybdenum alloys are considered to be attractive structural materials for high-temperature applications. However, molybdenum alloys are sensitive to gas impurities and have the characteristics of low temperature embrittlement and less resistance to oxidation at elevated temperature. The toughness and strength of welded joint is not easy to be ensured by traditional technology. Recently, many efforts have been made to join molybdenum and its alloys. In this paper, we present the result of investigations on welding methods of molybdenum and its alloys and overview the practical applications in engineering. The key of joining molybdenum alloys is to improve the toughness of welded joint and prevent the generation of pores and cracks.


2006 ◽  
Vol 302-303 ◽  
pp. 138-149 ◽  
Author(s):  
Gai Fei Peng ◽  
Sammy Yin Nin Chan ◽  
Qi Ming Song ◽  
Quan Xin Yi

This paper presents a review on the effect of fire on concrete, citing 43 references. It was found that most of them are on the behavior of concrete under high temperature conditions more or less different from the standard fire condition. The problem of spalling, which high-strength concrete encounters when exposed to fire, is especially urgent to solve. Since the literature on the behavior of concrete under fire conditions is very limited, the literature even under elevated temperature has to be used as a part of the base of further research. The further research needs urgently to be carried out under the standard fire condition. Residual mechanical properties reported in most previous literature might be overestimated, where natural cooling was usually employed. Proper evaluation of fire resistance of concrete needs more experimental data obtained under various cooling regimes such as water spraying or water quenching.


2014 ◽  
Vol 14 (3) ◽  
pp. 482-487 ◽  
Author(s):  
Dalibor Vojtěch ◽  
Jiří Kubásek ◽  
Milena Voděrová ◽  
Jan Šerák

1991 ◽  
Vol 6 (12) ◽  
pp. 2653-2659 ◽  
Author(s):  
G.M. Pharr ◽  
S.V. Courington ◽  
J. Wadsworth ◽  
T.G. Nieh

The mechanical properties of nickel beryllide, NiBe, have been investigated in the temperature range 20–820 °C. The room temperature properties were studied using tension, bending, and compression tests, while the elevated temperature properties were characterized in compression only. NiBe exhibits some ductility at room temperature; the strains to failure in tension and compression are 1.3% and 13%, respectively. Fracture is controlled primarily by the cohesive strength of grain boundaries. At high temperatures, NiBe is readily deformable—strains in excess of 30% can be achieved at temperatures as low as 400 °C. Strain hardening rates are high, and the flow stress decreases monotonically with temperature. The high temperature strength of NiBe is as good or better than that of NiAl, but not quite as good as CoAl.


Sign in / Sign up

Export Citation Format

Share Document