A Miniature Low Voltage SEM with High Resolution

1999 ◽  
Vol 5 (S2) ◽  
pp. 322-323
Author(s):  
J.M. Krans ◽  
T.L. van Rooy

Miniaturization of electron optical systems has gained much interest over the last decade [1,2]. In a scanning electron microscope, downscaling of the column dimensions is expected to allow for high resolution imaging at low electron beam voltage. Main advantages of low voltage imaging are lower penetration depth, increased secondary electron yield, less specimen charging and better topographic contrast [3].We have developed a miniature scanning electron microscope (SEM) with high resolution at low beam energies. The outer dimensions of the miniaturized SEM column are 25 mm diameter and 95 mm length, including conventional field emitter electron source module. The column prototype is shown in Fig. 1. The size reduction has been achieved by the exclusive implementation of electrostatic column components. Electron optical simulations indicate that the retarding objective lens of the miniature SEM allows for a probe resolution of 3 nm at 1 keV beam energy. The secondary electrons are collected at an internal scintillator detector.

Author(s):  
J. Ximen ◽  
P. S. D. Lin ◽  
J. B. Pawley ◽  
M. Schippert

By providing higher image contrast and reduced charging artifacts, the low voltage scanning electron microscope (LVSEM) is a valuable tool for surface characterization, of particular importance on nonconductive material such as biological specimens. Several SEM designs optimized for use at low voltage have been proposed.Recently, we have designed a new high resolution LVSEM using a field emission gun. The key problem is to decrease both the spherical and chromatic aberration coefficients by using a magnetic lens of small bore diameters(5mm and 10mm) and a narrow gap (7.5mm) (FIG. 1). In our first design, the magnetic lens is built around the side-entry stage of a Philips 300kV TEM and performs as well as that in the present Hitachi SEM H-900 or H-900S. Its simple design has been chosen for reliability and flexibility in farbrication.


Author(s):  
William P. Wergin ◽  
Eric F. Erbe ◽  
Terrence W. Reilly

Although the first commercial scanning electron microscope (SEM) was introduced in 1965, the limited resolution and the lack of preparation techniques initially confined biological observations to relatively low magnification images showing anatomical surface features of samples that withstood the artifacts associated with air drying. As the design of instrumentation improved and the techniques for specimen preparation developed, the SEM allowed biologists to gain additional insights not only on the external features of samples but on the internal structure of tissues as well. By 1985, the resolution of the conventional SEM had reached 3 - 5 nm; however most biological samples still required a conductive coating of 20 - 30 nm that prevented investigators from approaching the level of information that was available with various TEM techniques. Recently, a new SEM design combined a condenser-objective lens system with a field emission electron source.


Author(s):  
Becky Holdford

Abstract On mechanically polished cross-sections, getting a surface adequate for high-resolution imaging is sometimes beyond the analyst’s ability, due to material smearing, chipping, polishing media chemical attack, etc.. A method has been developed to enable the focused ion beam (FIB) to re-face the section block and achieve a surface that can be imaged at high resolution in the scanning electron microscope (SEM).


2000 ◽  
Vol 6 (S2) ◽  
pp. 764-765
Author(s):  
H. Kazumori ◽  
A. Yamada ◽  
M. Mita ◽  
T. Nokuo ◽  
M. Saito

A newly developed cold FE-GUN which enables to us to obtain large probe current and low emission noise, and conical strongly excited objective lens has been installed on the JSM-6700F Scanning Electron Microscope (SEM). In the range of accelerating voltages from 0.5 to 15kV, this instrument has got much better resolution as compared with in-lens type SEM (Ohyama et al 1986)(Fig. 1). We can obtain high-resolution secondary electron images with large samples (ex. 150mm ϕ×10mmH).Our old type objective lens (Kazumori et al 1994) has the limitation of working distance (WD), but the new lens enables us to work at very short WD at accelerating voltage of 15kV. As a result the spherical (Cs) and chromatic (Cc) aberration constants are 1.9mm and 1.7mm respectively at a WD of 3mm.In order to get large probe current, we increased emission current and got near the distance between the t ip of emi tter and the pr inciple plane of condenser lens.


Author(s):  
P. S. D. Lin ◽  
M. K. Lamvik

Unlike a CEM or high resolution STEM, where the specimen is immersed between the pole pieces of the objective lens, a scanning electron microscope has its specimen stage situated off the lens field. After scattering with the specimen, electrons follow straight paths. It is rather simple to deduce the information from the signal. A transmission stage in a SEM is therefore a useful device for studying various scattering processes and the contrast thus generated.The transmission stage can also be used in connection with the investigation of secondary and backscattered electron emission phenomena. Previously, a back-scattered electron detector was installed in one of the scanning microscopes in the laboratory.


Author(s):  
H. Koike ◽  
T. Inoué

Low temperature microscope technology can be traced back to the last century including the time of light microscope, and its history is over a hundred years. In the field of electron microscopy, low temperature techniques such as the freeze-fracture replica, freeze-sectioning, freeze-substitution, etc. were tested up to early 1960s. According to the progress of the rapid-freezing method, the freeze-substitution and freeze-etching replica methods have provided great successful results.The low temperature scanning electron microscope (LTSEM) was also tested by Echlin et al. in 1970, and thereafter, a number of LTSEM constructions were attempted. These LTSEMs are generally classified into two groups: the type with fracturing and coating facilities directly attached to the SEM column, and the group having a separated preparation chamber and a transfer device. The LTSEM so far constructed were reviewed comprehensively in greater detail. Some such instruments were designed taking account of stringent requirements of low temperature techniques. These systems, however, seemed to be too comprehensive, involving complex procedures as compared withe their resolutions. In comparison with the conspicuous results obtained by other low temperature techniques, the LTSEM can be regarded as still in the stage prior to practical application from the viewpoint of the high resolution. In consideration of these circumstances, the present paper aims at providing a new LTSEM to realize simple operation retaining the advantage of the ultrastructural preservation by the rapid-freezing and the high resolution by introducing the high-excitation objective lens.


2011 ◽  
Vol 19 (5) ◽  
pp. 22-25 ◽  
Author(s):  
Dominik Greif ◽  
Daniel Wesner ◽  
Dario Anselmetti ◽  
Jan Regtmeier

When studying highly resolved scanning electron microscope images of cell surfaces, the question arises, whether the observed patterns are real or just artifacts of the cell preparation process. The following steps are usually necessary for preparation: fixation, drying, and metal coating. Each step might introduce different artifacts. Clever techniques have been developed to dry cells as gently as possible, for example critical point drying with different organic solvents and CO2. Instrument manufacturers also have taken account of this issue, for example, through the realization of the environmental scanning electron microscope (ESEM), operating with a low-vacuum environment saturated with water so that samples might stay hydrated. Another approach is the extreme high-resolution scanning electron microscope (XHR SEM), where the electron beam is decelerated shortly before reaching the sample. This technique requires no metal coating of the sample. Cryo-SEM also may be used, where no sample preparation is required beyond freezing in a high-pressure freezer or other cryo-fixation device. Then the cell can be examined in the frozen, hydrated state using a cryostage. However, at least some kind of preparation is necessary for SEM imaging, and we wanted to find out what changes the preparation makes on the cell surface.


Sign in / Sign up

Export Citation Format

Share Document