In-Situ TEM Annealing of Nanocrystalline Copper Thin Films

2007 ◽  
Vol 13 (S02) ◽  
Author(s):  
S Simoes ◽  
R Calinas ◽  
PJ Ferreira ◽  
F Viana ◽  
MT Vieira ◽  
...  
1993 ◽  
Vol 323 ◽  
Author(s):  
Yujing Wu ◽  
Elizabeth G. Jacobs ◽  
Cyrus Pouraghabagher ◽  
Russell F. Pinizzotto

AbstractThe formation and growth of Cu6Sn5 and Cu3Sn at the interface of Sn-Pb solder/copper substrate are factors which affect the solderability and reliability of electronic solder joints. The addition of particles such as Ni to eutectic Sn-Pb solder drastically affects the activation energies of formation for both intermetallics. This study was performed to understand the mechanisms of intermetallic formation and the effects of Ni on intermetallic growth. Cu/Sn and Cu/Sn/Ni thin films were deposited by evaporation and observed in the TEM in real time using a hot stage. The diffusion of Sn through Cu6Sn5 and Cu3Sn followed by reaction with Cu must occur for intermetallic formation and growth to take place. Ni is an effective diffusion barrier which prevents Sn from diffusing into Cu.


2005 ◽  
Vol 875 ◽  
Author(s):  
Marc Legros ◽  
Gerhard Dehm ◽  
T. John Balk

AbstractTo investigate the origin of the high strength of thin films, in-situ cross-sectional TEM deformation experiments have been performed on several metallic films attached to rigid substrates. Thermal cycles, comparable to those performed using laser reflectometry, were applied to thin foils inside the TEM and dislocation motion was recorded dynamically on video. These observations can be directly compared to the current models of dislocation hardening in thin films. As expected, the role of interfaces is crucial, but, depending on their nature, they can attract or repel dislocations. When the film/interface holds off dislocations, experimental values of film stress match those predicted by the Nix-Freund model. In contrast, the attracting case leads to higher stresses that are not explained by this model. Two possible hardening scenarios are explored here. The first one assumes that the dislocation/interface attraction reduces dislocation mobility and thus increases the yield stress of the film. The second one focuses on the lack of dislocation nucleation processes in the case of attracting interfaces, even though a few sources have been observed in-situ.


Author(s):  
Daniel Bufford ◽  
Douglas Stauffer ◽  
William Mook ◽  
S.A. Syed Asif ◽  
Brad Boyce ◽  
...  

2011 ◽  
Vol 17 (S2) ◽  
pp. 1362-1363
Author(s):  
P Gao ◽  
C Nelson ◽  
J Jokisaari ◽  
S Baek ◽  
C Eom ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2009 ◽  
Vol 478 (1-2) ◽  
pp. 240-245 ◽  
Author(s):  
P.Y. Li ◽  
H.M. Lu ◽  
S.C. Tang ◽  
X.K. Meng

2001 ◽  
Vol 7 (S2) ◽  
pp. 324-325
Author(s):  
D.L. Medlin

Interfacial anisotropy complicates the prediction of microstructural evolution, particularly ir extreme cases for which the presence of facets and corners prevents the application of classical notions of grain-boundary curvature. Although there has been much effort at incorporating anisotropic grain-boundary properties, including faceted geometries, into computational approaches for microstructural evolution, at present our mechanistic understanding of the behavior of facets anc their junctions remains limited. In this presentation, we investigate the development of faceted boundaries between Σ=3 <111> oriented grains in epitaxially deposited gold thin films. This system is well suited tc experimental studies of facet evolution since the crystallography and structure of the boundaries is already well understood. It is well known that “double-positioning” of epitaxially aligned <111> grains on a surface of three-fold or six-fold symmetry results in a microstructure composed of grains in two twin-related (Σ=3) variants that are separated by facets running vertically through the film and forming 120 degree corners [1,2].


Author(s):  
F.K. LeGoues

In recent papers, we have described a novel mechanism for strain relaxation of thin films. Because of its strong resemblance to the well known Frank-Read sources of dislocations, it was called the “Modified-Frank-Read” (MFR) mechanism. This process was first observed during the growth of compositionally graded SiGe/Si(001) thin films, where it results in dislocations pile-ups being injected deep into an initially perfect substrate, leaving the topmost part of the film relaxed and nominally defect free. This last observation opens the door to a wide range of electronic applications since it makes it possible to grow electronic grade buffer layers of arbitrary composition and lattice parameter.The exact mechanism of the reproduction of dislocations was identified through tilting experiment and analysis of several compositionally graded SiGe/Si(001) structures. These also provided the important parameters controlling this mode of strain relaxation. We thus demonstrated that the MFR mechanism corresponds to the multiplication of “corner dislocations” (dislocations whose line forms a 90° angle) by simultaneous glide on two (111) planes.


Author(s):  
Martha L. Mecartney ◽  
M. C. Gust ◽  
N. D. Evans

BaTiO3 thin films made by the sol-gel process require a crystallization heat treatment to transform the amorphous gel into a crystalline material. This work used a Ba-Ti methoxypropoxide precursor in a 0.25M solution of methoxypropanol which was spin coated as 5 (each -600 nm thick) layers on (100) Si (FIG. 1). The {100} planes of perovskite BaTiO3 have a good lattice match with {110} Si; d110 of Si = 0.38 nm, and d100 of BaTiO3 = 0.4 nm. Consequently, it should be possible to grow heteroepitaxial films of (100) BaTiO3 on (100) Si. Such samples pyrolized at 350.C and then annealed in a conventional furnace at 750°C for one hour, however, did not crystallize heteroepitaxially with the substrate. Rather, crystallization occurred by a nucleation and growth process from within the gel. Furthermore, the gel layer at the Si/BaTiO3 interface remained amorphous. In-situ hot stage experiments were conducted in a transmission electron microscope (TEM) to determine the nucleation and crystallization behavior.


2015 ◽  
Vol 152 ◽  
pp. 105-108 ◽  
Author(s):  
Baoming Wang ◽  
Vikas Tomar ◽  
Aman Haque

2013 ◽  
Vol 61 (1) ◽  
pp. 205-216 ◽  
Author(s):  
F. Mompiou ◽  
M. Legros ◽  
A. Boé ◽  
M. Coulombier ◽  
J.-P. Raskin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document