scholarly journals The Effects of Maintaining Temperature in Annealing Heat Treatment for an FSWed 6061-T6 Al Alloy

2013 ◽  
Vol 19 (S5) ◽  
pp. 69-72
Author(s):  
Seung-Jun Lee ◽  
Min-Su Han ◽  
Seong-Jong Kim

AbstractThe technological development of all kinds of lightweight transportation devices including vehicles, aircraft, ships, etc. has progressed markedly with the demand for energy saving and environmental protection. Aluminum alloy is in the spotlight as it is a suitable environmentally friendly material. However, deformation is a major problem during the welding process because aluminum alloy has a large thermal expansion coefficient. In addition, it is known that its corrosion resistance is excellent; nevertheless, in practice, considerable corrosion is generated and this is a major problem. To solve this problem, the friction stir welding (FSW) technology is applied extensively at various industrial fields as a new welding technique. This method involves a process in which materials are joined by frictional heat and physical force. Therefore, we evaluated improvements in mechanical properties and corrosion resistance through annealing heat treatment after FSW. The electrochemical experiment did not show a significant difference. However, the microstructure observation showed defectless, fine crystal particles, indicating excellent properties at 200–225°C.

2013 ◽  
Vol 811 ◽  
pp. 39-45
Author(s):  
Seung Jun Lee ◽  
Jae Yong Jeong ◽  
Seong Jong Kim

Recently, demand for environment protection and reduction of energy consumption has led to active development of technology to reduce the weight of transportation devices. Furthermore, due to the development of the ocean leisure industry, there is a increasing number of small shipbuilding including yacht using aluminum. However, there are a lot of problems to be solved in aluminum ship welding from the technological, economic and environmental perspectives. An alternative to solve these problems is the friction stir welding technique. But, inflow frictional heat is generated in case of friction stir welding of 6061-T6 alloy, and the crystalline structure grows, resulting in weak mechanical strength. Accordingly, this study is to improve the mechanical characteristics and corrosion resistance of FSWed 6061-T6 alloy through annealing heat treatment. This study compared the characteristics with time of heat treatment at a constant temperature for the annealing heat treatment. Results of electrochemical experiments, the stir zone in annealing time 60min. showed the low corrosion current density. Micro-Vickers hardness in 60min. presents the higher value than the other conditions.


2017 ◽  
Vol 863 ◽  
pp. 3-7
Author(s):  
Koo Kil No ◽  
Joon Tae Yoo ◽  
Jong Hoon Yoon ◽  
Ho Sung Lee

Aluminum alloy 2219 is widely used in aerospace applications since it has a unique combination of good weldability and high specific strength. Furthermore, it can provide a high strength after heat treatment with superior properties in cryogenic environment so they have been widely used for cryogenic fuel tank of space launch vehicles. It is known that solid state welding like friction stir welding can improve the joint properties of this alloy. Friction stir welding is a solid state welding technology which two materials are welded together by the frictional heat due to the rotation of the tool. In this study, friction stir welding was performed on aluminum alloy 2219 sheets. The range of welding parameter is four rotation speeds from 350 to 800 rpm and six travel speeds from 120 to 420 mm/min. The results include the microstructural change after friction stir welding. The microstructure was characterized and material in the stirred zone experience sufficient deformation and heat input which cause the complete dynamic recrystallization. The present work represents the strength at each process condition and the optimum friction stir welding process parameters. The optimum weld efficiency obtained in this study was 76.5 %.


2019 ◽  
Vol 43 (2) ◽  
pp. 230-236
Author(s):  
Ashok S. Kannusamy ◽  
Ravindran Ramasamy

This paper addresses the effect of post weld heat treatment methods on the mechanical and corrosion characteristics of friction stir welded aluminum alloy AA2014-T6. Aluminum alloy AA2014 is mainly used in applications that demand high strength to weight ratios, such as aerospace, marine, and industrial applications. In this work, AA2014-T6 plates of 6 mm thick were butt welded using a tool with a square profile. Tensile strength, hardness, and corrosion characteristics were compared between the samples as welded and post weld heat treated. Welded samples that were heat treated for a shorter ageing period (8 h) showed improved tensile strength irrespective of welding process parameters, compared to as-welded samples. The samples heat treated for a longer ageing period (9 h) showed a decline in tensile strength for low tool rotation speed. Hardness increased in welded samples heat treated for 8 h. Welded samples heat treated for 9 h show high passivity in corrosion media.


Author(s):  
J.C. Verduzco Huarez ◽  
R. Garcia Hernandez ◽  
G. M. Dominguez Almaraz ◽  
J.J. Villalón López

This research work focuses on the study of the improvement of mechanical properties, specifically the tensile strength of 6061-T6 aluminum alloy on prismatic specimens with 9.5 mm thickness that has been subjected to friction stir welding process and two heat treatments; solubilized and aging before or after the welding process. Three cases studied and evaluated were, welding of the base material without heat treatment (BMW), solubilized heat treatment and partial aging of the base material before welding (HTBW), and heat treatment of solubilized and aging of the base material after welding (HTAW). The obtained results show an increase of about 10% (20 MPa) of tensile strength for the HTBW process, compared to BMW case. In addition, for the case of HTAW, the obtained tensile resistance presents a joint efficiency of 96%, which is close to the tensile strength of the base material (»310 MPa).


2016 ◽  
Vol 20 (5) ◽  
pp. 1693-1701
Author(s):  
Alin Murariu ◽  
Darko Veljic ◽  
Dragana Barjaktarevic ◽  
Marko Rakin ◽  
Nenad Radovic ◽  
...  

The heat generated during friction stir welding (FSW) process depends on plastic deformation of the material and friction between the tool and the material. In this work, heat generation is analysed with respect to the material velocity around the tool in Al alloy Al2024-T351 plate. The slip rate of the tool relative to the workpiece material is related to the frictional heat generated. The material velocity, on the other hand, is related to the heat generated by plastic deformation. During the welding process, the slippage is the most pronounced on the front part of the tool shoulder. Also, it is higher on the retreating side than on the advancing side. Slip rate in the zone around the tool pin has very low values, almost negligible. In this zone, the heat generation from friction is very low, because the material is in paste-like state and subjected to intensive plastic deformation. The material flow velocity around the pin is higher in the zone around the root of the pin. In the radial direction, this quantity increases from the pin to the periphery of the tool shoulder.


2017 ◽  
Vol 23 (3) ◽  
pp. 481-487 ◽  
Author(s):  
KiTae Bae ◽  
JoungHyun La ◽  
InGyu Lee ◽  
SangYul Lee ◽  
KyungHoon Nam

2013 ◽  
Vol 829 ◽  
pp. 131-135 ◽  
Author(s):  
Amir Mostafapour ◽  
Vahid Rezazadeh ◽  
Salar Salahi

Recently, friction stir processing (FSP) was developed as an effective method to modify microstructural and mechanical properties of materials. During process, a rotating tool is inserted in a plate, providing frictional heating and mechanical mixing. In this investigation, the effect of annealing heat treatment on the microstructure characteristics of the nugget zone was investigated during friction stirs processing (FSP) of the pure copper. Plate with 4 mm thickness was friction stir processed at constant traverse speed of 45 mm/min and tool rotation speed of 700 rpm. Samples were processed in various annealing conditions. Results showed that by increasing the annealing duration from 45 to 180 minutes at annealing temperatures of 600°C and 800°C, the grain size and the hardness value of samples significantly decreased. At annealing temperature of 1000°C samples were exposed to extra heat, grains started to coarsen and hardness decreased. Ultrafine-grained microstructure in FSP samples was achieved using annealing heat treatment at annealing temperature of 600°C.


Sign in / Sign up

Export Citation Format

Share Document