In Situ WetSTEM Observation of Gold Nanorod Self-Assembly Dynamics in a Drying Colloidal Droplet

2014 ◽  
Vol 20 (2) ◽  
pp. 385-393 ◽  
Author(s):  
Filip Novotný ◽  
Petr Wandrol ◽  
Jan Proška ◽  
Miroslav Šlouf

AbstractDirect in situ visualization of nanoparticles in a liquid is an important challenge of modern electron microscopy. The increasing significance of bottom-up methods in nanotechnology requires a direct method to observe nanoparticle interactions in a liquid as the counterpart to the ex situ electron microscopy and indirect scattering and spectroscopy methods. Especially, the self-assembly of anisometric nanoparticles represents a difficult task, and the requirement to trace the route and orientation of an individual nanoparticle is of highest importance. In our approach we utilize scanning transmission electron microscopy under environmental conditions to visualize the mobility and self-assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (AuNRs) in an aqueous colloidal solution. We directly observed the drying-mediated AuNR self-assembly in situ during rapid evaporation of a colloidal droplet at 4°C and pressure of about 900 Pa. Several types of final AuNR packing were documented including side-by-side oriented chains, tip-to-tip loosely arranged nanorods, and domains of vertically aligned AuNR arrays. The effect of local heating by electron beam is used to qualitatively asses the visco-elastic properties of the formed AuNR/CTAB/water membrane. Local heating induces the dehydration and contraction of a formed membrane indicated either by its rupture and/or by movement of the embedded AuNRs.

Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


2008 ◽  
Vol 14 (S2) ◽  
pp. 436-437 ◽  
Author(s):  
G Yang ◽  
Y Zhao ◽  
K Sader ◽  
A Bleloch ◽  
RF Klie

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2016 ◽  
Vol 22 (S5) ◽  
pp. 36-37
Author(s):  
Arnaud Demortiere ◽  
Charudatta Phatak ◽  
Andras Kovacs ◽  
Jan Caron ◽  
Nikita Repnin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document