A Multi-Step Transmission Electron Microscopy Sample Preparation Technique for Cracked, Heavily Damaged, Brittle Materials

2014 ◽  
Vol 20 (6) ◽  
pp. 1646-1653
Author(s):  
Claire V. Weiss Brennan ◽  
Scott D. Walck ◽  
Jeffrey J. Swab

AbstractA new technique for the preparation of heavily cracked, heavily damaged, brittle materials for examination in a transmission electron microscope (TEM) is described in detail. In this study, cross-sectional TEM samples were prepared from indented silicon carbide (SiC) bulk ceramics, although this technique could also be applied to other brittle and/or multiphase materials. During TEM sample preparation, milling-induced damage must be minimized, since in studying deformation mechanisms, it would be difficult to distinguish deformation-induced cracking from cracking occurring due to the sample preparation. The samples were prepared using a site-specific, two-step ion milling sequence accompanied by epoxy vacuum infiltration into the cracks. This technique allows the heavily cracked, brittle ceramic material to stay intact during sample preparation and also helps preserve the true microstructure of the cracked area underneath the indent. Some preliminary TEM results are given and discussed in regards to deformation studies in ceramic materials. This sample preparation technique could be applied to other cracked and/or heavily damaged materials, including geological materials, archaeological materials, fatigued materials, and corrosion samples.

Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
R. Li ◽  
M.L. Ray ◽  
P.E. Fischione ◽  
...  

Abstract Fast and accurate examination from the bulk to the specific area of the defect in advanced semiconductor devices is critical in failure analysis. This work presents the use of Ar ion milling methods in combination with Ga focused ion beam (FIB) milling as a cutting-edge sample preparation technique from the bulk to specific areas by FIB lift-out without sample-preparation-induced artifacts. The result is an accurately delayered sample from which electron-transparent TEM specimens of less than 15 nm are obtained.


1990 ◽  
Vol 199 ◽  
Author(s):  
Guang-Hwa M. Ma ◽  
Sopa Chevacharoenkul

ABSTRACTA modified “two-in-one” cross-sectional TEM sample preparation technique is described. By coating a thin layer of “marker” to distinguish one sample from the other, two samples could be simultaneously prepared in one TEM cross-sectional specimen. Therefore, the specimen preparation time is reduced by nearly one half. The coating can be done in an existing ion-mill. Criteria for choosing a suitable marker as well as tips on getting good quality specimens are described. An example of applying this technique to a processing-microstructure study of an ultra-shallow junction formation in silicon is demonstrated.


Author(s):  
L. A. Giannuzzi ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

A primary concern involving transmission electron microscopy (TEM) analysis is whether the electron transparent region under investigation is representative of the bulk material. TEM is frequently employed to examine the microstructure of electrodeposited materials due to their small grain size and high dislocation density. Previous work in this laboratory on palladium electrodeposits has shown that deformation twins and diffusion induced recrystallization may be induced during preparation of thin foils using both twin jet electropolishing and ion beam thinning. Recent developments in TEM sample preparation in the physical sciences include a procedure for the cross-section of heterogeneous layered materials which reduces or eliminates the need for ion milling. In this sample preparation technique, a tripod polisher device is used to mechanically polish the specimen to electron transparency. The purpose of this paper is to report on the influence of the tripod polisher sample preparation technique, on the microstructure of zinc electrodeposits.


1991 ◽  
Vol 254 ◽  
Author(s):  
L. A. Giannuzzi ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bidter

AbstractA preparation technique for the production of cross-sectional transmission electron microscope (TEM) samples from the interdiffusion regions of Fe-Zn binary couples is described. To alleviate the problem of unequal ion milling rates between the Fe and Zn, a 0.75mm thick Fe sheet has been double plated with a thick electrodeposited Zn coating to achieve a total couple thickness of ˜3mm. After slicing the couple in cross-section, the Fe region of the sample is dimpled to perforation near the Fe-Zn interface. Final thinning for TEM analysis is obtained by ion milling using a liquid nitrogen cold stage and sector speed control. The ion milling procedure is stopped when the perforated hole in the Fe-side of the couple extends through the faster eroding Zn-side of the interface. This technique, in modified form, is expected to be suitable for commercial steels coated with Zn-based alloys.


2005 ◽  
Vol 13 (1) ◽  
pp. 26-29 ◽  
Author(s):  
R.B. Irwin ◽  
A. Anciso ◽  
P.J. Jones ◽  
C. Patton

Sample preparation for Transmission Electron Microscopy (TEM) is usually performed such that the final sample orientation is either a cross section or a plan view of the bulk material, as shown schematically in Figure 1. The object of any sample preparation technique, for either of these two orientations, is to thin a selected volume of the sample from its initial bulk state to electron transparency, ~ 100nm thick. In doing so, the final sample must be mechanically stable, vacuum compatible, and, most of all, unchanged from the initial bulk material. Many techniques have been used to achieve this goal: cleaving, sawing, mechanical polishing, chemical etching, ion milling, focused ion beam (FIB) milling, and many others.


Sign in / Sign up

Export Citation Format

Share Document