Cutting-Edge Sample Preparation from FIB to Ar Concentrated Ion Beam Milling of Advanced Semiconductor Devices

Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
R. Li ◽  
M.L. Ray ◽  
P.E. Fischione ◽  
...  

Abstract Fast and accurate examination from the bulk to the specific area of the defect in advanced semiconductor devices is critical in failure analysis. This work presents the use of Ar ion milling methods in combination with Ga focused ion beam (FIB) milling as a cutting-edge sample preparation technique from the bulk to specific areas by FIB lift-out without sample-preparation-induced artifacts. The result is an accurately delayered sample from which electron-transparent TEM specimens of less than 15 nm are obtained.

1997 ◽  
Vol 3 (S2) ◽  
pp. 357-358
Author(s):  
C. Amy Hunt

The demand for TEM analysis in semiconductor failure analysis is rising sharply due to the shrinking size of devices. A well-prepared sample is a necessity for getting meaningful results. In the past decades, a significant amount of effort has been invested in improving sample preparation techniques for TEM specimens, especially precision cross-sectioning techniques. The most common methods of preparation are mechanical dimpling & ion milling, focused ion beam milling (FIBXTEM), and wedge mechanical polishing. Each precision XTEM technique has important advantages and limitations that must be considered for each sample.The concept for both dimpling & ion milling and wedge specimen preparation techniques is similar. Both techniques utilize mechanical polishing to remove the majority of the unwanted material, followed by ion milling to assist in final polishing or cleaning. Dimpling & ion milling produces the highest quality samples and is a relatively easy technique to master.


Author(s):  
L. A. Giannuzzi ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

A primary concern involving transmission electron microscopy (TEM) analysis is whether the electron transparent region under investigation is representative of the bulk material. TEM is frequently employed to examine the microstructure of electrodeposited materials due to their small grain size and high dislocation density. Previous work in this laboratory on palladium electrodeposits has shown that deformation twins and diffusion induced recrystallization may be induced during preparation of thin foils using both twin jet electropolishing and ion beam thinning. Recent developments in TEM sample preparation in the physical sciences include a procedure for the cross-section of heterogeneous layered materials which reduces or eliminates the need for ion milling. In this sample preparation technique, a tripod polisher device is used to mechanically polish the specimen to electron transparency. The purpose of this paper is to report on the influence of the tripod polisher sample preparation technique, on the microstructure of zinc electrodeposits.


Author(s):  
C. S. Bonifacio ◽  
P. Nowakowski ◽  
M. L. Ray ◽  
P. E. Fischione ◽  
C. Downing

Abstract Failure analysis of advanced semiconductor devices demands fast and accurate examination from the bulk to the specific area of the defect. Consequently, nanometer resolution and below is critical for finding defects. This work presents the use of argon ion milling methods for multiple length scale sample preparation, micrometer to sub-ångström, without sample preparation- induced artifacts for correlative SEM and TEM failure analysis. The result is an accurately delayered sample from which electron-transparent TEM specimens of less than 20 nm are obtained.


2009 ◽  
Vol 633-634 ◽  
pp. 73-84
Author(s):  
Deng Pan ◽  
S. Kuwano ◽  
T. Fujita ◽  
M. W. Chen

Ultra-large compressive plasticity at room temperature has recently been observed in electrodeposited nanocrystalline nickel (nc-Ni) under micro-scale compression (Pan, Kuwano, Fujita and Chen: Nano Lett. Vol. 7 (2007), p. 2108). With aid of a TEM sample preparation technique employing focused ion beam (FIB), TEM observations on deformed nc-Ni evidenced deformation-induced microstructural evolution of nc-Ni at a variety of strain levels: Whilst the deformation increases, substantial grain growth is uncovered in the nc-Ni. No apparent ex situ evidence of intragranular dislocation activities is found in the deformed sample. As thermal diffusion plays an insignificant role in the deformation in nc-Ni at room temperature (~0.17Tm), this premium plasticity is achieved in accommodation with the grain-boundary-mediated deformation, with assistance of extensive grain growth that is mainly driven by high stresses at steady plastic flow.


2021 ◽  
Author(s):  
Tony Colpaert ◽  
Stefaan Verleye

Abstract This paper describes a fast and effective sample preparation method to allow backside fault localization on GaN package devices. Backside analysis by Photon Emission Microscopy (PEM) is becoming preferable to frontside analysis when the die is covered by metal layers. This paper describes an optimized method for backside sample preparation on GaN package devices having a thick heavily doped p-type silicon substrate. The method combines mechanical and chemical deprocessing steps, resulting in a fast and effective sample preparation technique for PEM analysis. Additionally, the laser marking process parameters to facilitate orientation during the final physical failure analysis by Focused Ion Beam (FIB) are also shared.


2005 ◽  
Vol 13 (1) ◽  
pp. 26-29 ◽  
Author(s):  
R.B. Irwin ◽  
A. Anciso ◽  
P.J. Jones ◽  
C. Patton

Sample preparation for Transmission Electron Microscopy (TEM) is usually performed such that the final sample orientation is either a cross section or a plan view of the bulk material, as shown schematically in Figure 1. The object of any sample preparation technique, for either of these two orientations, is to thin a selected volume of the sample from its initial bulk state to electron transparency, ~ 100nm thick. In doing so, the final sample must be mechanically stable, vacuum compatible, and, most of all, unchanged from the initial bulk material. Many techniques have been used to achieve this goal: cleaving, sawing, mechanical polishing, chemical etching, ion milling, focused ion beam (FIB) milling, and many others.


Author(s):  
Pradip Sairam Pichumani ◽  
Fauzia Khatkhatay

Abstract Silicon photonics is a disruptive technology that aims for monolithic integration of photonic devices onto the complementary metal-oxide-semiconductor (CMOS) technology platform to enable low-cost high-volume manufacturing. Since the technology is still in the research and development phase, failure analysis plays an important role in determining the root cause of failures seen in test vehicle silicon photonics modules. The fragile nature of the test vehicle modules warrants the development of new sample preparation methods to facilitate subsequent non-destructive and destructive analysis methods. This work provides an example of a single step sample preparation technique that will reduce the turnaround time while simultaneously increasing the scope of analysis techniques.


Author(s):  
Julien Goxe ◽  
Béatrice Vanhuffel ◽  
Marie Castignolles ◽  
Thomas Zirilli

Abstract Passive Voltage Contrast (PVC) in a Scanning Electron Microscope (SEM) or a Focused Ion Beam (FIB) is a key Failure Analysis (FA) technique to highlight a leaky gate. The introduction of Silicon On Insulator (SOI) substrate in our recent automotive analog mixed-signal technology highlighted a new challenge: the Bottom Oxide (BOX) layer, by isolating the Silicon Active Area from the bulk made PVC technique less effective in finding leaky MOSFET gates. A solution involving sample preparation performed with standard FA toolset is proposed to enhance PVC on SOI substrate.


Sign in / Sign up

Export Citation Format

Share Document