Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM)

2016 ◽  
Vol 22 (6) ◽  
pp. 1270-1280 ◽  
Author(s):  
Maria J. Pereira ◽  
Joao S. Amaral ◽  
Nuno J. O. Silva ◽  
Vitor S. Amaral

AbstractDetermining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM’s ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni–Mn–Ga thin films using localized nano-thermal analysis is presented.

Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Johannes Konnerth ◽  
David Harper ◽  
Seung-Hwan Lee ◽  
Timothy G. Rials ◽  
Wolfgang Gindl

Abstract Cross sections of wood adhesive bonds were studied by scanning thermal microscopy (SThM) with the aim of scrutinizing the distribution of adhesive in the bond line region. The distribution of thermal conductivity, as well as temperature in the bond line area, was measured on the surface by means of a nanofabricated thermal probe offering high spatial and thermal resolution. Both the thermal conductivity and the surface temperature measurements were found suitable to differentiate between materials in the bond region, i.e., adhesive, cell walls and embedding epoxy. Of the two SThM modes available, the surface temperature mode provided images with superior optical contrast. The results clearly demonstrate that the polyurethane adhesive did not cause changes of thermal properties in wood cell walls with adhesive contact. By contrast, cell walls adjacent to a phenol-resorcinol-formaldehyde adhesive showed distinctly changed thermal properties, which is attributed to the presence of adhesive in the wood cell wall.


Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 491
Author(s):  
Christoph Metzke ◽  
Fabian Kühnel ◽  
Jonas Weber ◽  
Günther Benstetter

New micro- and nanoscale devices require electrically isolating materials with specific thermal properties. One option to characterize these thermal properties is the atomic force microscopy (AFM)-based scanning thermal microscopy (SThM) technique. It enables qualitative mapping of local thermal conductivities of ultrathin films. To fully understand and correctly interpret the results of practical SThM measurements, it is essential to have detailed knowledge about the heat transfer process between the probe and the sample. However, little can be found in the literature so far. Therefore, this work focuses on theoretical SThM studies of ultrathin films with anisotropic thermal properties such as hexagonal boron nitride (h-BN) and compares the results with a bulk silicon (Si) sample. Energy fluxes from the probe to the sample between 0.6 µW and 126.8 µW are found for different cases with a tip radius of approximately 300 nm. A present thermal interface resistance (TIR) between bulk Si and ultrathin h-BN on top can fully suppress a further heat penetration. The time until heat propagation within the sample is stationary is found to be below 1 µs, which may justify higher tip velocities in practical SThM investigations of up to 20 µms−1. It is also demonstrated that there is almost no influence of convection and radiation, whereas a possible TIR between probe and sample must be considered.


2001 ◽  
Vol 680 ◽  
Author(s):  
J. Carlos Rojo ◽  
Leo J. Schowalter ◽  
Kenneth Morgan ◽  
Doru I. Florescu ◽  
Fred H. Pollak ◽  
...  

ABSTRACTLarge (15mm diameter) single-crystal AlN boules have been prepared using sublimationrecondensation growth. X-ray topography shows that the dislocation density averages less than 103 cm2 in some of the substrates but also that the dislocations are not uniformly distributed. Also, strain due to the differential expansion with the crucible walls seems to cause severe cracking in the periphery of the crystal and high-strain regions. Thermal analysis using the Scanning Thermal Microscopy (SThM) reveals a thermal conductivity of 3.4 ± 0.2 W/K-cm, which is the largest value ever reported for AlN.


1999 ◽  
Vol 245 (1-3) ◽  
pp. 203-209 ◽  
Author(s):  
S Callard ◽  
G Tallarida ◽  
A Borghesi ◽  
L Zanotti

2013 ◽  
Vol 44 (11) ◽  
pp. 1029-1034 ◽  
Author(s):  
Séverine Gomès ◽  
Pascal Newby ◽  
Bruno Canut ◽  
Konstantinos Termentzidis ◽  
Olivier Marty ◽  
...  

2005 ◽  
Author(s):  
Hsinyi Lo ◽  
Wenjun Liu ◽  
Mehdi Asheghi

Scanning Thermal Microscopy (SThM) employs a thermocouple as the scanning sensor to capture thermal images with sub-micron spatial resolution. After nearly two decades of research and development in this area, many outstanding issues/questions related to the accuracy and resolution of SThM technique has remained either unanswered or at best ambiguously defined. The present work uses numerical simulation for heat conduction in a combined SThM probe and device to obtain temperature distributions in various heated nanostructures. The limits of accuracy and spatial resolution of the SThM technique for heated metal bridges are estimated using a probe with 100 nm thermocouple junction as the temperature sensor. It is concluded mat large errors in temperature measurements should be expected for small devices that are fabricated on poor thermal conductivity substrates. There is no clear and unique definition for the spatial resolution of the SThM technique as it may change for different device configuration and substrates. It appears that the finite dimensions of the probe and contact area impose a limit on the spatial resolution of the SThM, which is strongly influenced by temperature gradients across the device under test.


Sign in / Sign up

Export Citation Format

Share Document