Flower-Like MoS2 for Next-Generation High-Performance Energy Storage Device Applications

2019 ◽  
Vol 25 (6) ◽  
pp. 1394-1400 ◽  
Author(s):  
Sumit Majumder ◽  
Sangam Banerjee

AbstractHere, a well crystalline 3D flower-like structured MoS2 (~420 nm) has been successfully synthesized on a large scale by a simple hydrothermal technique. The evolution of morphology in the formation process has also been investigated. The crystallinity, purity, and morphology of the sample are characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, fieldemission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The FESEM and TEM images reveal that the sample exhibits a uniform 3D flower-like microsphere shape with folded nanosheets, which are stretched out along the edge of the microsphere. The electrochemical performance of the sample has been investigated by cyclic voltammogram, galvanostatic charge–discharge, and electrochemical impedance spectroscopy studies. The results of the electrochemical analysis suggest that the material delivers a maximum specific capacitance (Csp) of 350 F/g at a discharge current density of 0.25 A/g with energy density 17.5 Wh/kg. It also exhibits good capability and excellent cyclic stability (94% capacity retention after 1,000 cycles in 1 A/g) owing to the coupling effect of electrical conductivity with the interesting morphology and larger active surface area. Hence, the sample may be used as a promising electrode material for high-performance energy storage devices.

2012 ◽  
Vol 05 (04) ◽  
pp. 1250046 ◽  
Author(s):  
SOUMEN GIRI ◽  
DEBASIS GHOSH ◽  
ALEXANDER P. KHARITONOV ◽  
CHAPAL KUMAR DAS

Supercapacitors are highly attractive energy storage device of the modern world. It can supply peak pulse power and high cycle stability to an electrochemical system. Here, we have explored the formation of copper ferrite ( CuFe2O4 ) nanowire formation in presence of carbon nanotubes (CNTs) and enhancement of electrochemical performance on fluorination. All the electrochemical characterization was studied by three electrode system. Fourier transform infrared spectroscopy (FT-IR) was performed to test the functionality present in the composite. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) study had been carried out to observe the change in surface and bulk morphology of the composites which showed that CuFe2O4 nanowires are attached with CNTs or fluorinated CNTs. This fluorinated nanocomposite shows the highest specific capacitance of 267 F/g.


Author(s):  
Rouwei Yan ◽  
Biao Xu ◽  
K. P. Annamalai ◽  
Tianlu Chen ◽  
Zhiming Nie ◽  
...  

Background : Renewable energies are in great demand because of the shortage of traditional fossil energy and the associated environmental problems. Ni and Se-based materials are recently studied for energy storage and conversion owing to their reasonable conductivities and enriched redox activities as well as abundance. However, their electrochemical performance is still unsatisfactory for practical applications. Objective: To enhance the capacitance storage of Ni-Se materials via modification of their physiochemical properties with Fe. Methods: A two-step method was carried out to prepare FeNi-Se loaded reduced graphene oxide (FeNi-Se/rGO). In the first step, metal salts and graphene oxide (GO) were mixed under basic condition and autoclaved to obtain hydroxide intermediates. As a second step, selenization process was carried out to acquire FeNi-Se/rGO composites. Results: X-ray diffraction measurements (XRD), nitrogen adsorption at 77K, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out to study the structures, porosities and the morphologies of the composites. Electrochemical measurements revealed that FeNi-Se/rGO notably enhanced capacitance than the NiSe/G composite. This enhanced performance was mainly attributed to the positive synergistic effects of Fe and Ni in the composites, which not only had influence on the conductivity of the composite but also enhanced redox reactions at different current densities. Conclusion: NiFe-Se/rGO nanocomposites were synthesized in a facile way. The samples were characterized physicochemically and electrochemically. NiFeSe/rGO giving much higher capacitance storage than the NiSe/rGO explained that the nanocomposites could be an electrode material for energy storage device applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Hu ◽  
Xiaomin Tang ◽  
Qing Dai ◽  
Zhiqiang Liu ◽  
Huamin Zhang ◽  
...  

AbstractMembranes with fast and selective ions transport are highly demanded for energy storage devices. Layered double hydroxides (LDHs), bearing uniform interlayer galleries and abundant hydroxyl groups covalently bonded within two-dimensional (2D) host layers, make them superb candidates for high-performance membranes. However, related research on LDHs for ions separation is quite rare, especially the deep-going study on ions transport behavior in LDHs. Here, we report a LDHs-based composite membrane with fast and selective ions transport for flow battery application. The hydroxide ions transport through LDHs via vehicular (standard diffusion) & Grotthuss (proton hopping) mechanisms is uncovered. The LDHs-based membrane enables an alkaline zinc-based flow battery to operate at 200 mA cm−2, along with an energy efficiency of 82.36% for 400 cycles. This study offers an in-depth understanding of ions transport in LDHs and further inspires their applications in other energy-related devices.


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


2021 ◽  
pp. 161313
Author(s):  
Mahasweta Chatterjee ◽  
Samik Saha ◽  
Sachindranath Das ◽  
Satyaranjan Bhattacharyya ◽  
Swapan Kumar Pradhan

2017 ◽  
Vol 9 (35) ◽  
pp. 29872-29880 ◽  
Author(s):  
Zhijie Bi ◽  
Xiaomin Li ◽  
Yongbo Chen ◽  
Xiaoli He ◽  
Xiaoke Xu ◽  
...  

2019 ◽  
Vol 97 (2) ◽  
pp. 140-146
Author(s):  
Tian Gan ◽  
Zhikai Wang ◽  
Mengru Chen ◽  
Wanqiu Fu ◽  
Haibo Wang ◽  
...  

In this work, the Ag@Cu particles with yolk–shell nanostructure was prepared by facile solvothermal method, which was modified on glassy carbon electrode (GCE) to fabricate electrochemical sensor for the convenient and fast determination of p-aminobenzoic acid (PABA). The surface morphology and electrochemical properties of the as-prepared Ag@Cu nanocomposite modified electrode were characterized by scanning electron microscopy, transmission electron microscopy, chronocoulometry, and electrochemical impedance spectroscopy. Further, the electrochemical sensing of PABA was performed on the Ag@Cu/GCE using cyclic voltammetry and differential pulse voltammetry techniques, showing high catalytic activity. Under the optimal conditions, the sensor exhibited a wide linear range, high sensitivity, and low detection limit of 0.315 μmol/L for PABA. The developed sensor was also successfully applied for PABA detection in anesthetic and cosmetics with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document