scholarly journals Failure Analysis in FeCo Magnetic Alloys through Electron Channeling Contrast Imaging Defect Characterization

2021 ◽  
Vol 27 (S1) ◽  
pp. 918-919
Author(s):  
Julia Deitz ◽  
Tim Ruggles ◽  
Philip Noell ◽  
Donald Susan ◽  
Joseph Michael
Author(s):  
Yongkai Zhou ◽  
Luyang Han

Abstract A failure analysis work flow is presented demonstrating dislocation visualization, site isolation, TEM lamella preparation and defect characterization. A novel beam control technique allows visualizing dislocations with significantly improved spatial resolution in SEM using Electron Channeling Contrast Imaging. Site-specific TEM preparation on dislocations is therefore possible. The prepared thin lamella can be inspected in the SEM using STEM to study dislocations. This is a cost effective work flow without using TEM.


Author(s):  
Randal Mulder ◽  
Sam Subramanian ◽  
Tony Chrastecky

Abstract The use of atomic force probe (AFP) analysis in the analysis of semiconductor devices is expanding from its initial purpose of solely characterizing CMOS transistors at the contact level with a parametric analyzer. Other uses found for the AFP include the full electrical characterization of failing SRAM bit cells, current contrast imaging of SOI transistors, measuring surface roughness, the probing of metallization layers to measure leakages, and use with other tools, such as light emission, to quickly localize and identify defects in logic circuits. This paper presents several case studies in regards to these activities and their results. These case studies demonstrate the versatility of the AFP. The needs and demands of the failure analysis environment have quickly expanded its use. These expanded capabilities make the AFP more valuable for the failure analysis community.


2014 ◽  
Vol 104 (23) ◽  
pp. 232111 ◽  
Author(s):  
Santino D. Carnevale ◽  
Julia I. Deitz ◽  
John A. Carlin ◽  
Yoosuf N. Picard ◽  
Marc De Graef ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 912-914
Author(s):  
Ari Blumer ◽  
Marzieh Baan ◽  
Zak Blumer ◽  
Jacob Boyer ◽  
Tyler J. Grassman

2013 ◽  
Vol 20 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Gunasekar Naresh-Kumar ◽  
Jochen Bruckbauer ◽  
Paul R. Edwards ◽  
Simon Kraeusel ◽  
Ben Hourahine ◽  
...  

AbstractWe combine two scanning electron microscopy techniques to investigate the influence of dislocations on the light emission from nitride semiconductors. Combining electron channeling contrast imaging and cathodoluminescence imaging enables both the structural and luminescence properties of a sample to be investigated without structural damage to the sample. The electron channeling contrast image is very sensitive to distortions of the crystal lattice, resulting in individual threading dislocations appearing as spots with black–white contrast. Dislocations giving rise to nonradiative recombination are observed as black spots in the cathodoluminescence image. Comparison of the images from exactly the same micron-scale region of a sample demonstrates a one-to-one correlation between the presence of single threading dislocations and resolved dark spots in the cathodoluminescence image. In addition, we have also obtained an atomic force microscopy image from the same region of the sample, which confirms that both pure edge dislocations and those with a screw component (i.e., screw and mixed dislocations) act as nonradiative recombination centers for the Si-doped c-plane GaN thin film investigated.


2019 ◽  
Vol 162 ◽  
pp. 103-107 ◽  
Author(s):  
G. L'hôte ◽  
C. Lafond ◽  
P. Steyer ◽  
S. Deschanel ◽  
T. Douillard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document