Monte Carlo simulation of electron modes of a Siemens Primus linac (8, 12 and 14 MeV)

2013 ◽  
Vol 12 (4) ◽  
pp. 352-359 ◽  
Author(s):  
Mohammad Taghi Bahreyni Toossi ◽  
Mahdi Ghorbani ◽  
Fateme Akbari ◽  
Leila Sobhkhiz Sabet ◽  
Mohammad Mehrpouyan

AbstractBackgroundElectron mode is used for treatment of superficial tumours in linac-based radiotherapy.PurposeThe aim of present study is simulation of 8, 12 and 14 MeV electrons from a Siemens Primus linac using MCNPX Monte Carlo (MC) code and verification of the results based on comparison of the results with the measured data.Materials and methodsElectron mode for 8, 12 and 14 MeV electron energies of a Siemens Primus linac was simulated using MCNPX MC code. Percent depth dose (PDD) data for 10 × 10, 15 × 15 and 25 × 25 cm2 applicators obtained from MC simulations were compared with the corresponding measured data.ResultsGamma index values were less than unity in most of points for all the above-mentioned energies and applicators. However, for 25 × 25 cm2 applicator in 8 MeV energy, 10 × 10 cm2 applicator and 15 × 15 cm2 applicator in 14 MeV energy, there were four data points with gamma indices higher than unity. However among these data points, there are a number of cases with relatively large value of gamma index, these cases are positioned on the bremsstrahlung tail of the PDD curve which is not normally used in treatment planning.ConclusionThere was good agreement between the results of MC simulations developed in this study and the measured values. The obtained simulation programmes can be used in dosimetry of electron mode of Siemens Primus linac in the cases in which it is not easily feasible to perform experimental in-phantom measurements.

Author(s):  
H Dowlatabadi ◽  
A A Mowlavi ◽  
M Ghorbani ◽  
S Mohammadi ◽  
F Akbari

Introduction: Radiation therapy using electron beams is a promising method due to its physical dose distribution. Monte Carlo (MC) code is the best and most accurate technique for forespeaking the distribution of dose in radiation treatment of patients.Materials and Methods: We report an MC simulation of a linac head and depth dose on central axis, along with profile calculations. The purpose of the present research is to carefully analyze the application of MC methods for the calculation of dosimetric parameters for electron beams with energies of 8–14 MeV at a Siemens Primus linac. The principal components of the linac head were simulated using MCNPX code for different applicators. Results: The consequences of measurements and simulations revealed a good agreement. Gamma index values were below 1 for most points, for all energy values and all applicators in percent depth dose and dose profile computations. A number of states exhibited rather large gamma indices; these points were located at the tail of the percent depth dose graph; these points were less used in in radiotherapy. In the dose profile graph, gamma indices of most parts were below 1. The discrepancies between the simulation results and measurements in terms of Zmax, R90, R80 and R50 were insignificant. The results of Monte Carlo simulations showed a good agreement with the measurements. Conclusion: The software can be used for simulating electron modes of a Siemens Primus linac when direct experimental measurements are not feasible.


1978 ◽  
Vol 31 (4) ◽  
pp. 299 ◽  
Author(s):  
HA Blevin ◽  
J Fletcher ◽  
SR Hunter

Hunter (1977) found that a Monte-Carlo simulation of electron swarms in hydrogen, based on an isotropic scattering model, produced discrepancies between the predicted and measured electron transport parameters. The present paper shows that, with an anisotropic scattering model, good agreement is obtained between the predicted and experimental data. The simulation code is used here to calculate various parameters which are not directly measurable.


2018 ◽  
Vol 18 (02) ◽  
pp. 191-197
Author(s):  
Masoumeh Hoseinnezhad ◽  
Mohammad Mahdavi ◽  
Seyyed R. M. Mahdavi ◽  
Mobarake Mahdavizade

AbstractPurposeThe purpose of this study was to determine the dose enhancement factor (DEF) of gold nanoparticles in a dosimeter gel and construct percentage depth dose curves, using the Optical CT system and the Monte Carlo simulation model, to determine the effect of increasing the dose caused by increasing the concentration of gold nanoparticles at depths in the gel.Materials and methodsThe Magic-f Gel was made based on the relevant protocol in the physics lab. To determine the amount of the increase in the absorbed dose, the gold nanoparticles were added to the gel and irradiated. An increase in the dose after adding nanoparticles to the gel vials was estimated both with the Optical CT system and by the Monte Carlo simulation method.ResultsDose enhancement curves for doses of 2, 4 and 6 Gy were prepared for gel vials without adding nanoparticles, and nanoparticle gels at concentrations 0·17, 3 and 6 mM. Also, the DEF was estimated. For the 0·17 mM molar gel, the DEF for 2, 4 and 6 Gy was 0·7, 0·743 and 0·801, respectively. For the 3 mM gel, it was 1·98, 2·5 and 2·2, and for the 6 mM gel, it was 37·4, 4·24 and 4·71, respectively.ConclusionThe enhancement of the dose after adding gold nanoparticles was confirmed both by experimental data and by simulation data.


2020 ◽  
Vol 26 (3) ◽  
pp. 484-496
Author(s):  
Yu Yuan ◽  
Hendrix Demers ◽  
Xianglong Wang ◽  
Raynald Gauvin

AbstractIn electron probe microanalysis or scanning electron microscopy, the Monte Carlo method is widely used for modeling electron transport within specimens and calculating X-ray spectra. For an accurate simulation, the calculation of secondary fluorescence (SF) is necessary, especially for samples with complex geometries. In this study, we developed a program, using a hybrid model that combines the Monte Carlo simulation with an analytical model, to perform SF correction for three-dimensional (3D) heterogeneous materials. The Monte Carlo simulation is performed using MC X-ray, a Monte Carlo program, to obtain the 3D primary X-ray distribution, which becomes the input of the analytical model. The voxel-based calculation of MC X-ray enables the model to be applicable to arbitrary samples. We demonstrate the derivation of the analytical model in detail and present the 3D X-ray distributions for both primary and secondary fluorescence to illustrate the capability of our program. Examples for non-diffusion couples and spherical inclusions inside matrices are shown. The results of our program are compared with experimental data from references and with results from other Monte Carlo codes. They are found to be in good agreement.


1999 ◽  
Vol 85 (1) ◽  
pp. 75-78 ◽  
Author(s):  
H. Miralles ◽  
M.A. Duch ◽  
M. Ginjaume ◽  
X. Ortega

2011 ◽  
Vol 25 (28) ◽  
pp. 2171-2181 ◽  
Author(s):  
OMAR EL BOUNAGUI ◽  
HASSANE ERRAMLI

A Monte Carlo simulation program was developed to calculate the variations of the channeled to random electronic stopping powers of He + in an energy 4 MeV in silicon single crystal along the major 〈100〉, 〈110〉 and 〈111〉 axes. This paper discusses both simulation and experimental results that shed light on the contribution of these factors. Results obtained by our simulation are in good agreement with the experimental results.


2009 ◽  
Vol 23 (05) ◽  
pp. 661-672 ◽  
Author(s):  
BO FENG ◽  
ZHIGANG WU ◽  
DINGPING LI

The structure function of the vortex lattice of layered superconductor is calculated to one-loop order. Based on a phenomenological melting criterion concerning the Debye–Waller factor, we calculate the melting line of the vortex lattice, and compare our results to Monte Carlo simulation and experiment. We find that our results are in good agreement with the Monte Carlo results. Moreover, our analytic calculation of the melting line of BSCCO fits the experiment reasonably.


Sign in / Sign up

Export Citation Format

Share Document