layered superconductor
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 24)

H-INDEX

28
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kazuhisa Hoshi ◽  
Ryosuke Kurihara ◽  
Yosuke Goto ◽  
Masashi Tokunaga ◽  
Yoshikazu Mizuguchi

AbstractCentrosymmetric compounds with local inversion symmetry breaking have tremendously interesting and intriguing physical properties. In this study, we focus on a BiCh2-based (Ch: S, Se) layered superconductor, as a system with local inversion asymmetry, because spin polarisation based on the Rashba–Dresselhaus-type spin–orbit coupling has been observed in centrosymmetric BiCh2-based LaOBiS2 systems, while the BiCh2 layer lacks local inversion symmetry. Herein, we report the existence of extremely high in-plane upper critical fields in the BiCh2-based system LaO0.5F0.5BiS2−xSex (x = 0.22 and 0.69). The superconducting states are not completely suppressed by the applied magnetic fields with strengths up to 55 T. Thus, we consider that the in-plane upper critical field is enhanced by the local inversion symmetry breaking and its layered structure. Our study will open a new pathway for the discovery of superconductors that exhibit a high upper critical field by focusing on the local inversion symmetry breaking.


2021 ◽  
Vol 6 (4) ◽  
pp. 48
Author(s):  
Sharon S. Philip ◽  
Anushika Athauda ◽  
Yosuke Goto ◽  
Yoshikazu Mizuguchi ◽  
Despina Louca

The local atomic structure of the non-magnetic layered superconductor Bi4O4S3 was investigated using neutron diffraction and pair density function (PDF) analysis. Although on average, the crystal structure is well ordered, evidence for local, out–of–plane sulfur distortions is provided, which may act as a conduit for charge transfer from the SO4 blocks into the superconducting BiS2 planes. In contrast with LaO1−xFxBiS2, no sulfur distortions were detected in the planes, which indicates that charge density wave fluctuations are not supported in Bi4O4S3.


2021 ◽  
pp. 2109893
Author(s):  
Lichen Wu ◽  
Mingyuan Gu ◽  
Yanhong Feng ◽  
Suhua Chen ◽  
Ling Fan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5289
Author(s):  
Masood Rauf Khan ◽  
Antonio Leo ◽  
Angela Nigro ◽  
Armando Galluzzi ◽  
Massimiliano Polichetti ◽  
...  

The role of a layered structure in superconducting pinning properties is still at a debate. The effects of the vortex shape, which can assume for example a staircase form, could influence the interplay with extrinsic pinning coming from the specific defects of the material, thus inducing an effective magnetic field dependence. To enlighten this role, we analysed the angular dependence of flux pinning energy U(H,θ) as a function of magnetic field in FeSe0.5Te0.5 thin film by considering the field components along the ab-plane of the crystal structure and the c-axis direction. U(H,θ) has been evaluated from magneto-resistivity measurements acquired at different orientations between the applied field up to 16 T and FeSe0.5Te0.5 thin films grown on a CaF2 substrate. We observed that the U(H,θ) shows an anisotropic trend as a function of both the intensity and the direction of the applied field. Such a behaviour can be correlated to the presence of extended defects elongated in the ab-planes, thus mimicking a layered superconductor, as we observed in the microstructure of the compound. The comparison of FeSe0.5Te0.5 with other superconducting materials provides a more general understanding on the flux pinning energy in layered superconductors.


2021 ◽  
Vol 103 (18) ◽  
Author(s):  
Han Zhang ◽  
Yuqiang Fang ◽  
Teng Wang ◽  
Yixin Liu ◽  
Jianan Chu ◽  
...  

2021 ◽  
Vol 103 (10) ◽  
Author(s):  
N. Kvitka ◽  
S. S. Apostolov ◽  
N. M. Makarov ◽  
T. Rokhmanova ◽  
A. A. Shmat'ko ◽  
...  

2021 ◽  
Vol 60 (2) ◽  
pp. 020907
Author(s):  
Kazuhisa Hoshi ◽  
Kenta Sudo ◽  
Yosuke Goto ◽  
Motoi Kimata ◽  
Yoshikazu Mizuguchi

2020 ◽  
Vol 5 (4) ◽  
pp. 81
Author(s):  
Kazuhisa Hoshi ◽  
Shunsuke Sakuragi ◽  
Takeshi Yajima ◽  
Yosuke Goto ◽  
Akira Miura ◽  
...  

Recently, the anomalous two-fold-symmetric in-plane anisotropy of superconducting states has been observed in a layered superconductor system, LaO1−xFxBiSSe (x = 0.1 and 0.5), with a tetragonal (four-fold symmetric) in-plane structure. To understand the origin of the phenomena observed in LaO1−xFxBiSSe, clarification of the low-temperature structural phase diagram is needed. In this study, we have investigated the low-temperature crystal structure of LaO1−xFxBiSSe (x = 0, 0.01, 0.02, 0.03, and 0.5). From synchrotron X-ray diffraction experiments, a structural transition from tetragonal to monoclinic was observed for x = 0 and 0.01 at 340 and 240 K, respectively. For x = 0.03, a structural transition and broadening of the diffraction peak were not observed down to 100 K. These facts suggest that the structural transition could be suppressed by 3% F substitution in LaO1−xFxBiSSe. Furthermore, the crystal structure for x = 0.5 at 4 K was examined by low-temperature laboratory X-ray diffraction, which confirmed that the tetragonal structure is maintained at 4 K for x = 0.5. Our structural investigation suggests that the two-fold-symmetric in-plane anisotropy of superconducting states observed in LaO1−xFxBiSSe was not originated from structural symmetry lowering in its average structure. To evaluate the possibility of the local structural modification like nanoscale puddles in the average tetragonal structure, further experiments are desired.


2020 ◽  
Vol 59 (19) ◽  
pp. 14290-14295
Author(s):  
Hiroki Ninomiya ◽  
Terunari Koshinuma ◽  
Taichiro Nishio ◽  
Hiroshi Fujihisa ◽  
Kenji Kawashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document