Laboratory simulation of ultraviolet irradiation from the Sun on amino acids. III. irradiation of glycine-tyrosine

2009 ◽  
Vol 8 (2) ◽  
pp. 63-68 ◽  
Author(s):  
F. Scappini ◽  
M.L. Capobianco ◽  
F. Casadei ◽  
R. Zamboni

AbstractThe effects of near ultraviolet (UV) radiation on water solutions of tyrosine and glycine-tyrosine are investigated using a broadband xenon lamp in the region 200–800 nm. These experiments form a contribution in the laboratory simulation of the solar irradiation on the building blocks of life with regard to the origin of life. Results are presented showing the photodecomposition of tyrosine and glycine-tyrosine, at different concentrations, against UV doses. The analysis of the irradiated solutions is carried out by spectroscopic and analytical techniques. The findings of our laboratory simulations are used to constrain the early stages of the life emerging process.

2007 ◽  
Vol 6 (4) ◽  
pp. 281-289 ◽  
Author(s):  
F. Scappini ◽  
M.L. Capobianco ◽  
F. Casadei ◽  
R. Zamboni ◽  
P. Giorgianni

AbstractThe effects of near ultraviolet (UV) irradiation on water solutions of phenylalanine and tryptophan have been investigated using a broad-band xenon lamp in the region 200–800 nm. This is a step in the laboratory simulation of the effects of Solar radiation on the building blocks of life, specifically α-amino acids, with regards to the origin of life. Results are presented showing the photodegradation of phenylalanine and tryptophan against different UV doses. Some of the degradation products are still protein amino acids. An analysis of the irradiated solutions is carried out by spectroscopic and analytic techniques. The laboratory simulations are discussed in the wake of a life emerging scenario on the primitive Earth.


2007 ◽  
Vol 6 (2) ◽  
pp. 123-129 ◽  
Author(s):  
F. Scappini ◽  
F. Casadei ◽  
R. Zamboni ◽  
S. Monti ◽  
P. Giorgianni ◽  
...  

AbstractThe effects of ultraviolet (UV) irradiation on water solutions of tyrosine (HO—C6H4—CH2—CHNH2—COOH) have been investigated using a Xe lamp in the region 200–800 nm. This is a step in laboratory simulation towards reproducing the action of the Solar radiation on the building blocks of life, specifically α-amino acids, in the primitive Earth anoxic conditions. Results are presented showing the photostability of tyrosine against different UV doses. Degradation products partly maintain life building capability and partly do not. A tendency towards structure complexification was observed. The analysis of the irradiated tyrosine solutions was conducted using various spectroscopic and analytic techniques. The laboratory results are discussed in the light of a primordial life-emerging scenario.


2020 ◽  
Author(s):  
Saibal Mitra

<p>The mathematician John von Neumann, through his work on universal constructors, discovered<br />a generalized version of the central dogma of molecular biology biology in the 1940s, long  <br />before the biological version had been discovered. While his discovery played no role in the  <br />development of molecular biology, we may benefit from a similar mathematical approach to find  <br />clues on the origin of life. This then involves addressing those problems in the field that  <br />do not depend on the details of organic chemistry. We can then consider a general set of  <br />models that describe machines capable of self-maintenance and self-replication formulated in  <br />terms of a set of building blocks and their interactions. </p> <p>The analogue of the origin of life problem is then to explain how one can get to such  <br />machines starting from a set of only building blocks. A fundamental obstacle one then faces  <br />is the limit on the complexity of low fidelity replicating systems, preventing building  <br />blocks from getting assembled randomly into low fidelity machines which can then improve due  <br />to natural selection [1]. A generic way out of this problem is for the entire ecosystem of  <br />machines to have been encapsulated in a micro-structure with fixed inner surface features  <br />that would have boosted the fidelity [2]. Such micro-structures could have formed as a result  <br />of the random assembly of building blocks, leading to so-called percolation clusters [2].</p> <p>This then leads us to consider how in the real world a percolation process involving the  <br />random assembly of organic molecules can be realized. A well studied process in the  <br />literature is the assembly of organic compounds in ice grains due to UV radiation and heating  <br />events [3,4,5]. This same process will also lead to the percolation process if it proceeds  <br />for a sufficiently long period [2].</p> <p>In this talk I will discuss the percolation process in more detail than has been done in [2],  <br />explaining how it leads to the necessary symmetry breakings such as the origin of chiral  <br />molecules needed to explain the origin of life.   </p> <p> </p> <p>[1] Eigen, M., 1971. Self-organization of matter and the evolution of biological  <br />macromolecules. Naturwissenschaften 58, 465-523.</p> <p>[2] Mitra, S., 2019. Percolation clusters of organics in interstellar ice grains as the  <br />incubators of life, Progress in Biophysics and Molecular Biology 149, 33-38.</p> <p>[3] Ciesla, F., and Sandford.,S., 2012. Organic Synthesis via Irradiation and Warming of Ice  <br />Grains in the Solar Nebula. Science 336, 452-454.</p> <p>[4] Muñoz Caro, G., et al., 2002. Amino acids from ultraviolet irradiation of interstellar ice  <br />analogues. Nature 416, 403-406.</p> <p>[5]  Meinert, C,., et al., 2016. Ribose and related sugars from ultraviolet irradiation of  <br />interstellar ice analogs. Science 352, 208-212.</p>


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5634 ◽  
Author(s):  
Surendra V. Singh ◽  
Jayaram Vishakantaiah ◽  
Jaya K. Meka ◽  
Vijayan Sivaprahasam ◽  
Vijayanand Chandrasekaran ◽  
...  

The building blocks of life, amino acids, are believed to have been synthesized in the extreme conditions that prevail in space, starting from simple molecules containing hydrogen, carbon, oxygen and nitrogen. However, the fate and role of amino acids when they are subjected to similar processes largely remain unexplored. Here we report, for the first time, that shock processed amino acids tend to form complex agglomerate structures. Such structures are formed on timescales of about 2 ms due to impact induced shock heating and subsequent cooling. This discovery suggests that the building blocks of life could have self-assembled not just on Earth but on other planetary bodies as a result of impact events. Our study also provides further experimental evidence for the ‘threads’ observed in meteorites being due to assemblages of (bio)molecules arising from impact-induced shocks.


2018 ◽  
Vol 40 (6) ◽  
pp. 18-21
Author(s):  
Martin J. Van Kranendonk

There are many different scientific aspects involved in the challenge of understanding the origin of life (OoL). These include organic geochemistry – how to make RNA and DNA molecules from the simple organic building blocks delivered from space in the form of amino acids and some other compounds. Other aspects involve the study of inorganic geochemistry – how elements are made available to promote organic molecule complexification, under what conditions will lipid membranes form and how to bring together the different components that make a functioning cell.


Author(s):  
Sankar Chatterjee ◽  
Surya Yadav

The Late Heavy Bombardment Period (4.1 to 3.8 billion years ago) of heightened impact cratering activity on young Earth is likely the driving force for the origin of life. During the Eoarchean, asteroids such as carbonaceous chondrites delivered the building blocks of life and water to early Earth. Asteroid collisions created innumerable hydrothermal crater lakes in the Eoarchean crust which inadvertently became the perfect cradle for prebiotic chemistry. These hydrothermal crater lakes were filled with cosmic water and the building blocks of life. forming a thick prebiotic soup. The unique combination of exogenous delivery of extraterrestrial building blocks of life, and the endogenous biosynthesis in hydrothermal impact crater lakes very likely gave rise to life. A new symbiotic model for the origin of life within the hydrothermal crater lakes is here proposed. In this scenario, life arose around four billion years ago through five hierarchical stages of increasing molecular complexity: cosmic, geologic, chemical, information, and biological. During the prebiotic synthesis, membranes first appeared in the hydrothermal crater lakes, followed by the simultaneous origin of RNA and protein molecules, creating the RNA/protein world. These proteins were noncoded protein enzymes that facilitated chemical reactions. RNA molecules formed in the hydrothermal crater basin by polymerization of the nucleotides on the montmorillonite mineral substrate. Similarly, the initial synthesis of abiotic protein enzymes was mediated by the condensation of amino acids on pyrite surfaces. The regular wet-dry cycles within the crater lakes assisted further concentration, condensation, and polymerization of the RNAs and proteins. Lipid membranes randomly encapsulated amino acids, RNA, and protein molecules from the prebiotic soup to initiate a molecular symbiosis inside the protocells, this led to the hierarchical emergence of several cell components. As the role of protein enzymes became essential for catalytic process in the RNA/protein world, Darwinian selection from noncoded to coded protein synthesis led to translation systems and the genetic code, heralding the information stage. In this stage, the biochemical pathways suggest the successive emergence of translation machineries such as tRNAs, aaRS, mRNAs, and of ribosomes for protein synthesis. The molecular attraction between tRNA and amino acid led to the emergence of translation machinery and the genetic code.  tRNA is an ancient molecule that created mRNA for the purpose of storing amino acid information like a digital strip. Each mRNA strand became the storage device for genetic information that encoded the amino acid sequences in triplet nucleotides. As information became available in the digital languages of the codon within mRNA, biosynthesis became less random and more organized and directional. The original translation machinery was simpler before the emergence of the ribosome than that of today. We review three main concepts on the origin and evolution of the genetic code: the stereochemical theory, the coevolution theory, and adaptive theory. We believe that these three theories are not mutually exclusive, but are compatible with our coevolution model of translations machines and the genetic code. We suggest biosynthetic pathways as the origin of the translation machine that provided the framework for the origin of the genetic code. During translation, the genetic code developed in three stages coincident with the refinement of the translation machinery: GNC code with four codons and four amino acids during interactions of pre-tRNA/pre-aaRS /pre-mRNA, SNS code consisting of 16 codons and 10 amino acids appeared during the tRNA/aaRS/mRNA interaction, and finally the universal genetic code evolved with the emergence of the tRNA/aaRS/mRNA/ribosome machine. The universal code consists of 64 codons and 20 amino acids, with a redundancy that minimizes errors in translation. To address the question of the origin of the biological information system in the RNA/protein world, we converted letter codons into numerical codons in the Universal Genetic Code Table. We developed a software called CATI (Codon-Amino Acid-Translator-Imitator) to translate randomly chosen numerical codons into corresponding amino acids and vice versa, gaining insight into how translation might have worked in the RNA/protein world. We simulated the likely biochemical pathways for the origin of translation and the genetic code using the Model-View-Controller (MVC) software framework, and the translation machinery step-by-step. We used AnyLogic software to simulate and visualize the evolution of the translation machines and the genetic code. We conclude that the emergence of the information age from the RNA/protein world was a watershed event in the origin of life about four billion years ago.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jana Bocková ◽  
Nykola C. Jones ◽  
Uwe J. Meierhenrich ◽  
Søren V. Hoffmann ◽  
Cornelia Meinert

AbstractCircularly polarised light (CPL) interacting with interstellar organic molecules might have imparted chiral bias and hence preluded prebiotic evolution of biomolecular homochirality. The l-enrichment of extra-terrestrial amino acids in meteorites, as opposed to no detectable excess in monocarboxylic acids and amines, has previously been attributed to their intrinsic interaction with stellar CPL revealed by substantial differences in their chiroptical signals. Recent analyses of meteoritic hydroxycarboxylic acids (HCAs) – potential co-building blocks of ancestral proto-peptides – indicated a chiral bias toward the l-enantiomer of lactic acid. Here we report on novel anisotropy spectra of several HCAs using a synchrotron radiation electronic circular dichroism spectrophotometer to support the re-evaluation of chiral biomarkers of extra-terrestrial origin in the context of absolute photochirogenesis. We found that irradiation by CPL which would yield l-excess in amino acids would also yield l-excess in aliphatic chain HCAs, including lactic acid and mandelic acid, in the examined conditions. Only tartaric acid would show “unnatural” d-enrichment, which makes it a suitable target compound for further assessing the relevance of the CPL scenario.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4587
Author(s):  
Fanny d’Orlyé ◽  
Laura Trapiella-Alfonso ◽  
Camille Lescot ◽  
Marie Pinvidic ◽  
Bich-Thuy Doan ◽  
...  

There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.


Sign in / Sign up

Export Citation Format

Share Document