scholarly journals The Origin of the Information System in the RNA/Protein World: A Simulation Model of the Evolution of Translation and the Genetic Code

Author(s):  
Sankar Chatterjee ◽  
Surya Yadav

The Late Heavy Bombardment Period (4.1 to 3.8 billion years ago) of heightened impact cratering activity on young Earth is likely the driving force for the origin of life. During the Eoarchean, asteroids such as carbonaceous chondrites delivered the building blocks of life and water to early Earth. Asteroid collisions created innumerable hydrothermal crater lakes in the Eoarchean crust which inadvertently became the perfect cradle for prebiotic chemistry. These hydrothermal crater lakes were filled with cosmic water and the building blocks of life. forming a thick prebiotic soup. The unique combination of exogenous delivery of extraterrestrial building blocks of life, and the endogenous biosynthesis in hydrothermal impact crater lakes very likely gave rise to life. A new symbiotic model for the origin of life within the hydrothermal crater lakes is here proposed. In this scenario, life arose around four billion years ago through five hierarchical stages of increasing molecular complexity: cosmic, geologic, chemical, information, and biological. During the prebiotic synthesis, membranes first appeared in the hydrothermal crater lakes, followed by the simultaneous origin of RNA and protein molecules, creating the RNA/protein world. These proteins were noncoded protein enzymes that facilitated chemical reactions. RNA molecules formed in the hydrothermal crater basin by polymerization of the nucleotides on the montmorillonite mineral substrate. Similarly, the initial synthesis of abiotic protein enzymes was mediated by the condensation of amino acids on pyrite surfaces. The regular wet-dry cycles within the crater lakes assisted further concentration, condensation, and polymerization of the RNAs and proteins. Lipid membranes randomly encapsulated amino acids, RNA, and protein molecules from the prebiotic soup to initiate a molecular symbiosis inside the protocells, this led to the hierarchical emergence of several cell components. As the role of protein enzymes became essential for catalytic process in the RNA/protein world, Darwinian selection from noncoded to coded protein synthesis led to translation systems and the genetic code, heralding the information stage. In this stage, the biochemical pathways suggest the successive emergence of translation machineries such as tRNAs, aaRS, mRNAs, and of ribosomes for protein synthesis. The molecular attraction between tRNA and amino acid led to the emergence of translation machinery and the genetic code.  tRNA is an ancient molecule that created mRNA for the purpose of storing amino acid information like a digital strip. Each mRNA strand became the storage device for genetic information that encoded the amino acid sequences in triplet nucleotides. As information became available in the digital languages of the codon within mRNA, biosynthesis became less random and more organized and directional. The original translation machinery was simpler before the emergence of the ribosome than that of today. We review three main concepts on the origin and evolution of the genetic code: the stereochemical theory, the coevolution theory, and adaptive theory. We believe that these three theories are not mutually exclusive, but are compatible with our coevolution model of translations machines and the genetic code. We suggest biosynthetic pathways as the origin of the translation machine that provided the framework for the origin of the genetic code. During translation, the genetic code developed in three stages coincident with the refinement of the translation machinery: GNC code with four codons and four amino acids during interactions of pre-tRNA/pre-aaRS /pre-mRNA, SNS code consisting of 16 codons and 10 amino acids appeared during the tRNA/aaRS/mRNA interaction, and finally the universal genetic code evolved with the emergence of the tRNA/aaRS/mRNA/ribosome machine. The universal code consists of 64 codons and 20 amino acids, with a redundancy that minimizes errors in translation. To address the question of the origin of the biological information system in the RNA/protein world, we converted letter codons into numerical codons in the Universal Genetic Code Table. We developed a software called CATI (Codon-Amino Acid-Translator-Imitator) to translate randomly chosen numerical codons into corresponding amino acids and vice versa, gaining insight into how translation might have worked in the RNA/protein world. We simulated the likely biochemical pathways for the origin of translation and the genetic code using the Model-View-Controller (MVC) software framework, and the translation machinery step-by-step. We used AnyLogic software to simulate and visualize the evolution of the translation machines and the genetic code. We conclude that the emergence of the information age from the RNA/protein world was a watershed event in the origin of life about four billion years ago.

2017 ◽  
Vol 115 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Matthias Granold ◽  
Parvana Hajieva ◽  
Monica Ioana Toşa ◽  
Florin-Dan Irimie ◽  
Bernd Moosmann

All extant life employs the same 20 amino acids for protein biosynthesis. Studies on the number of amino acids necessary to produce a foldable and catalytically active polypeptide have shown that a basis set of 7–13 amino acids is sufficient to build major structural elements of modern proteins. Hence, the reasons for the evolutionary selection of the current 20 amino acids out of a much larger available pool have remained elusive. Here, we have analyzed the quantum chemistry of all proteinogenic and various prebiotic amino acids. We find that the energetic HOMO–LUMO gap, a correlate of chemical reactivity, becomes incrementally closer in modern amino acids, reaching the level of specialized redox cofactors in the late amino acids tryptophan and selenocysteine. We show that the arising prediction of a higher reactivity of the more recently added amino acids is correct as regards various free radicals, particularly oxygen-derived peroxyl radicals. Moreover, we demonstrate an immediate survival benefit conferred by the enhanced redox reactivity of the modern amino acids tyrosine and tryptophan in oxidatively stressed cells. Our data indicate that in demanding building blocks with more versatile redox chemistry, biospheric molecular oxygen triggered the selective fixation of the last amino acids in the genetic code. Thus, functional rather than structural amino acid properties were decisive during the finalization of the universal genetic code.


2019 ◽  
Vol 20 (21) ◽  
pp. 5507 ◽  
Author(s):  
Vladimir Kubyshkin ◽  
Nediljko Budisa

A central question in the evolution of the modern translation machinery is the origin and chemical ethology of the amino acids prescribed by the genetic code. The RNA World hypothesis postulates that templated protein synthesis has emerged in the transition from RNA to the Protein World. The sequence of these events and principles behind the acquisition of amino acids to this process remain elusive. Here we describe a model for this process by following the scheme previously proposed by Hartman and Smith, which suggests gradual expansion of the coding space as GC–GCA–GCAU genetic code. We point out a correlation of this scheme with the hierarchy of the protein folding. The model follows the sequence of steps in the process of the amino acid recruitment and fits well with the co-evolution and coenzyme handle theories. While the starting set (GC-phase) was responsible for the nucleotide biosynthesis processes, in the second phase alanine-based amino acids (GCA-phase) were recruited from the core metabolism, thereby providing a standard secondary structure, the α-helix. In the final phase (GCAU-phase), the amino acids were appended to the already existing architecture, enabling tertiary fold and membrane interactions. The whole scheme indicates strongly that the choice for the alanine core was done at the GCA-phase, while glycine and proline remained rudiments from the GC-phase. We suggest that the Protein World should rather be considered the Alanine World, as it predominantly relies on the alanine as the core chemical scaffold.


2019 ◽  
Author(s):  
Kwok-Fong Chan ◽  
Stelios Koukouravas ◽  
Joshua Yi Yeo ◽  
Darius Wen-Shuo Koh ◽  
Samuel Ken-En Gan

ABSTRACTMutations underpin the processes in life, be it beneficial or detrimental. While mutations are assumed to be random in the bereft of selection pressures, the genetic code has underlying computable probabilities in amino acid phenotypic changes. With a wide range of implications including drug resistance, understanding amino acid changes is important. In this study, we calculated the probabilities of substitutions mutations in the genetic code leading to the 20 amino acids and stop codons. Our calculations reveal an enigmatic in-built self-preserving organization of the genetic code that averts disruptive changes at the physicochemical properties level. These changes include changes to start, aromatic, negative charged amino acids and stop codons. Our findings thus reveal a statistical mechanism governing the relationship between amino acids and the universal genetic code.


Life ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 25 ◽  
Author(s):  
Sankar Chatterjee ◽  
Surya Yadav

Information is the currency of life, but the origin of prebiotic information remains a mystery. We propose transitional pathways from the cosmic building blocks of life to the complex prebiotic organic chemistry that led to the origin of information systems. The prebiotic information system, specifically the genetic code, is segregated, linear, and digital, and it appeared before the emergence of DNA. In the peptide/RNA world, lipid membranes randomly encapsulated amino acids, RNA, and peptide molecules, which are drawn from the prebiotic soup, to initiate a molecular symbiosis inside the protocells. This endosymbiosis led to the hierarchical emergence of several requisite components of the translation machine: transfer RNAs (tRNAs), aminoacyl-tRNA synthetase (aaRS), messenger RNAs (mRNAs), ribosomes, and various enzymes. When assembled in the right order, the translation machine created proteins, a process that transferred information from mRNAs to assemble amino acids into polypeptide chains. This was the beginning of the prebiotic <i>information</i> age. The origin of the genetic code is enigmatic; herein, we propose an evolutionary explanation: the demand for a wide range of protein enzymes over peptides in the prebiotic reactions was the main selective pressure for the origin of information-directed protein synthesis. The molecular basis of the genetic code manifests itself in the interaction of aaRS and their cognate tRNAs. In the beginning, aminoacylated ribozymes used amino acids as a cofactor with the help of bridge peptides as a process for selection between amino acids and their cognate codons/anticodons. This process selects amino acids and RNA species for the next steps. The ribozymes would give rise to pre-tRNA and the bridge peptides to pre-aaRS. Later, variants would appear and evolution would produce different but specific aaRS-tRNA-amino acid combinations. Pre-tRNA designed and built pre-mRNA for the storage of information regarding its cognate amino acid. Each pre-mRNA strand became the storage device for the genetic information that encoded the amino acid sequences in triplet nucleotides. As information appeared in the digital languages of the codon within pre-mRNA and mRNA, and the genetic code for protein synthesis evolved, the prebiotic chemistry then became more organized and directional with the emergence of the translation and genetic code. The genetic code developed in three stages that are coincident with the refinement of the translation machines: the GNC code that was developed by the pre-tRNA/pre-aaRS /pre-mRNA machine, SNS code by the tRNA/aaRS/mRNA machine, and finally the universal genetic code by the tRNA/aaRS/mRNA/ribosome machine. We suggest the coevolution of translation machines and the genetic code. The emergence of the translation machines was the beginning of the Darwinian evolution, an interplay between information and its supporting structure. Our hypothesis provides the logical and incremental steps for the origin of the programmed protein synthesis. In order to better understand the prebiotic information system, we converted letter codons into numerical codons in the Universal Genetic Code Table. We have developed a software, called CATI (Codon-Amino Acid-Translator-Imitator), to translate randomly chosen numerical codons into corresponding amino acids and vice versa. This conversion has granted us insight into how the genetic code might have evolved in the peptide/RNA world. There is great potential in the application of numerical codons to bioinformatics, such as barcoding, DNA mining, or DNA fingerprinting. We constructed the likely biochemical pathways for the origin of translation and the genetic code using the Model-View-Controller (MVC) software framework, and the translation machinery step-by-step. While using AnyLogic software, we were able to simulate and visualize the entire evolution of the translation machines, amino acids, and the genetic code.


Author(s):  
Sankar Chatterjee ◽  
Surya Yadav

Information is the currency of life, but the origin of prebiotic information remains a mystery. We propose transitional pathways from the cosmic building blocks of life to the complex prebiotic organic chemistry that led to the origin of information systems. The prebiotic information system, specifically the genetic code, is segregated, linear, and digital and probably appeared during biogenesis four billion years ago. In the peptide/RNA world, lipid membranes randomly encapsulated amino acids, RNA, and protein molecules, drawn from the prebiotic soup, to initiate a molecular symbiosis inside the protocells. This endosymbiosis led to the hierarchical emergence of several requisite components of the translation machine: tRNAs, aaRS, mRNAs, and ribosomes. When assembled in the right order, the translation machine created biosynthetic polypeptides, a process that transferred information from mRNAs to proteins. This was the beginning of the prebiotic information age. The molecular attraction between tRNA and amino acids led to different stages of the translation machines and the genetic code. tRNA is an ancient molecule that designed and built mRNA for storing the information of its cognate amino acid. Each mRNA strand became the storage device for the genetic information that encoded the amino acid sequences in triplet nucleotides. As information appeared in the digital languages of the codon within mRNA, and the genetic code for protein synthesis evolved, the prebiotic chemistry then became more organized and directional. The origin of the genetic code is enigmatic; herein we propose an evolutionary explanation: the demand for a wide range of specific enzymes in the peptide/RNA world was the main selective pressure for the origin of information-directed protein synthesis. We review three main concepts on the origin and evolution of the genetic code: the stereochemical theory, the coevolution theory, and the adaptive theory. These three theories are compatible with our coevolution model of the translation machines and the genetic code. We suggest biosynthetic pathways as the origin of the specific translation machines which provided the framework for the origin of the genetic code. During translation, the genetic code developed in three stages coincident with the refinement of the translation machines: GNC code developed by the pre-tRNA/pre-aaRS /pre-mRNA machine, SNS code by the tRNA/aaRS/mRNA machine, and finally the universal genetic code by the tRNA/aaRS/mRNA/ribosome machine. Our hypothesis provides the logical and incremental steps for the origin of the programmed protein synthesis. In order to understand the prebiotic information system better, we converted letter codons into numerical codons in the Universal Genetic Code Table. We have developed a software called CATI (Codon-Amino Acid-Translator-Imitator) to translate randomly chosen numerical codons into corresponding amino acids and vice versa. This conversion has granted us insight into how the translation might have worked in the peptide/RNA world. There is great potential in the application of numerical codons to bioinformatics such as barcoding, DNA mining, or DNA fingerprinting. We constructed the likely biochemical pathways for the origin of translation and the genetic code using the Model-View-Controller (MVC) software framework, and the translation machinery step-by-step. Using AnyLogic software we were able to simulate and visualize the entire evolution of the translation machines and the genetic code. The results indicate that the emergence of the information age from the peptide/RNA world was a watershed event in the origin of life about four billion years ago.


2018 ◽  
Vol 40 (6) ◽  
pp. 18-21
Author(s):  
Martin J. Van Kranendonk

There are many different scientific aspects involved in the challenge of understanding the origin of life (OoL). These include organic geochemistry – how to make RNA and DNA molecules from the simple organic building blocks delivered from space in the form of amino acids and some other compounds. Other aspects involve the study of inorganic geochemistry – how elements are made available to promote organic molecule complexification, under what conditions will lipid membranes form and how to bring together the different components that make a functioning cell.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Amino Acids ◽  
2020 ◽  
Author(s):  
Thomas L. Williams ◽  
Debra J. Iskandar ◽  
Alexander R. Nödling ◽  
Yurong Tan ◽  
Louis Y. P. Luk ◽  
...  

AbstractGenetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.


2020 ◽  
pp. 44-53
Author(s):  
Oliver Quarrell

This chapter describes the nature of the genetic mistake. The genetic code, or DNA molecule, is wound up onto structures called chromosomes. The gene for HD is located on chromosome 4. As we have two copies of our genes the chromosomes are in pairs. Only one copy of the HD has to be abnormal to cause the condition. This results in a pattern of inheritance called autosomal dominant and both males and females can be affected. Genes code for proteins; the protein encoded by the HD gene is called huntingtin. Proteins are made of building blocks called amino acids. The gene for HD has an expansion of the genetic code for glutamine. Therefore, abnormal huntingtin has an expansion of the number of glutamines. The genetic code for glutamine is CAG so the mistake in the gene is sometimes called a CAG repeat expansion disorder or in referring to the protein it is called a polyglutamine repeat expansion. The gene is in one part of the cell and the protein-making machinery is in another part of the cell so a chemical messenger is required which is called RNA. Explaining this is important for understanding some current clinical trials


N. C. Wickramasinghe ( Department of Applied Mathematics and Astronomy, University College, Cardiff, U. K. ). The question of the origin of life is, of course, one of the most important scientific questions and it is also one of the most difficult. One is inevitably faced here with a situation where there are very few empirical facts of direct relevance and perhaps no facts relating to the actual transition from organic material to material that can even remotely be described as living. The time perspective of events that relate to this problem has already been presented by Dr Chang. Uncertainty still persists as to the actual first moment of the origin or the emergence of life on the Earth. At some time between 3800 and 3300 Ma BP the first microscopic living systems seem to have emerged. There is a definite moment in time corresponding to a sudden appearance of cellular-type living systems. Now, traditionally the evolution of carbonaceous compounds which led to the emergence of life on Earth could be divided into three principal steps and I shall just remind you what those steps are. The first step is the production of chemical building blocks that lead to the origin of the organic molecules necessary as a prerequisite for the evolution of life. Step two can be described in general terms as prebiotic evolution, the arrangement of these chemical units into some kind of sequence of precursor systems that come almost up to life but not quite; and then stage three is the early biological evolution which actually effects the transition from proto-cellular organic-type forms into truly cellular living systems. The transition is from organic chemistry, prebiotic chemistry to biochemistry. Those are the three principal stages that have been defined by traditional workers in the field, the people who, as Dr Chang said, have had the courage to make these queries and attempt to answer them. Ever since the classic experiments where organic materials were synthesized in the laboratory a few decades back, it was thought that the first step, the production of organic chemical units, is important for the origin of life on the Earth, and that this had to take place in some location on the Earth itself.


Sign in / Sign up

Export Citation Format

Share Document