Laboratory simulation of UV irradiation from the Sun on amino acids. I: irradiation of tyrosine

2007 ◽  
Vol 6 (2) ◽  
pp. 123-129 ◽  
Author(s):  
F. Scappini ◽  
F. Casadei ◽  
R. Zamboni ◽  
S. Monti ◽  
P. Giorgianni ◽  
...  

AbstractThe effects of ultraviolet (UV) irradiation on water solutions of tyrosine (HO—C6H4—CH2—CHNH2—COOH) have been investigated using a Xe lamp in the region 200–800 nm. This is a step in laboratory simulation towards reproducing the action of the Solar radiation on the building blocks of life, specifically α-amino acids, in the primitive Earth anoxic conditions. Results are presented showing the photostability of tyrosine against different UV doses. Degradation products partly maintain life building capability and partly do not. A tendency towards structure complexification was observed. The analysis of the irradiated tyrosine solutions was conducted using various spectroscopic and analytic techniques. The laboratory results are discussed in the light of a primordial life-emerging scenario.

2007 ◽  
Vol 6 (4) ◽  
pp. 281-289 ◽  
Author(s):  
F. Scappini ◽  
M.L. Capobianco ◽  
F. Casadei ◽  
R. Zamboni ◽  
P. Giorgianni

AbstractThe effects of near ultraviolet (UV) irradiation on water solutions of phenylalanine and tryptophan have been investigated using a broad-band xenon lamp in the region 200–800 nm. This is a step in the laboratory simulation of the effects of Solar radiation on the building blocks of life, specifically α-amino acids, with regards to the origin of life. Results are presented showing the photodegradation of phenylalanine and tryptophan against different UV doses. Some of the degradation products are still protein amino acids. An analysis of the irradiated solutions is carried out by spectroscopic and analytic techniques. The laboratory simulations are discussed in the wake of a life emerging scenario on the primitive Earth.


2009 ◽  
Vol 8 (2) ◽  
pp. 63-68 ◽  
Author(s):  
F. Scappini ◽  
M.L. Capobianco ◽  
F. Casadei ◽  
R. Zamboni

AbstractThe effects of near ultraviolet (UV) radiation on water solutions of tyrosine and glycine-tyrosine are investigated using a broadband xenon lamp in the region 200–800 nm. These experiments form a contribution in the laboratory simulation of the solar irradiation on the building blocks of life with regard to the origin of life. Results are presented showing the photodecomposition of tyrosine and glycine-tyrosine, at different concentrations, against UV doses. The analysis of the irradiated solutions is carried out by spectroscopic and analytical techniques. The findings of our laboratory simulations are used to constrain the early stages of the life emerging process.


Author(s):  
Jianxun Shen ◽  
Pauline M. Schwartz ◽  
Carl Barratt

On the primitive Earth, both L- and D-amino acids would have been present. However, only L-amino acids are essential blocks to construct proteins in modern life. To study the relative stability of homochiral and heterochiral peptides, a variety of computational methods were employed. 10 prebiotic amino acids (Gly, Ala, Asp, Glu, Ile, Leu, Pro, Ser, Thr, and Val) were previously determined by multiple previous meteorite, spark discharge, and hydrothermal vent studies. We focused on what had been reported as primary early Earth polypeptide analogs: 1ARK, 1PPT, 1ZFI, and 2LZE. Tripeptide composed of only Asp, Ser, and Val exemplified that different positions (i.e., N-terminus, C-terminus, and middle) made a difference in minimal folding energy of peptides, while the classification of amino acid (hydrophobic, acidic, or hydroxylic) did not show significant difference. Hierarchical cluster analysis for dipeptides with all possible combinations of the proposed 10 prebiotic amino acids and their D-amino acid substituted derivatives generated five clusters. Prebiotic polypeptides were built up to test the significance of molecular fluctuations, secondary structure occupancies, and folding energy differences based on these clusters. Most interestingly, among 129 residues, mutation sensitivity profiles presented that the ratio of more stable to less stable to equally stable D-amino acids was about 1:1:1. In conclusion, some combinations of a mixture of L- and D-amino acids can act as essential building blocks of life. Peptides with α-helices, long β-sheets, and long loops are usually less sensitive to D-amino acid replacements in comparison to short β-sheets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Juliana Calderan-Rodrigues ◽  
Marcin Luzarowski ◽  
Carolina Cassano Monte-Bello ◽  
Romina I. Minen ◽  
Boris M. Zühlke ◽  
...  

As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Daniela Lucia Muntean ◽  
Silvia Imre ◽  
Cosmina Voda

The influence of some factors on spironolactone stability in solution was studied, by applying high-performance liquid chromatography, as a part of a pharmaceutical preformulation study in order to obtain a spironolactone solution for alopecia treatment. Solutions of 1 mg/ml spironolactone in aqueous ethanolic solution 1 : 1 and in 20 mM cyclodextrines solutions (b-, hydroxi-b- and methyl-b-cyclodextrine) was used, maintained at 8 and 22 �C, protected from light and after UV irradiation at 254 nm. The main degradation products were 7a-thiospirolactone and canrenone. The most stable solutions were the alcoholic ones and with methyl-beta-cyclodextrine, but the simultaneous action of temperature and UV irradiation allowed degradation processes after one hour of exposure, more aggressive in the presence of methyl-beta-cyclodextrine. In conclusion, for alopecia treatment with spironolactone a 1 mg/mL ethanolic solution could be used and it is recommendable the protection of treated zone.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jana Bocková ◽  
Nykola C. Jones ◽  
Uwe J. Meierhenrich ◽  
Søren V. Hoffmann ◽  
Cornelia Meinert

AbstractCircularly polarised light (CPL) interacting with interstellar organic molecules might have imparted chiral bias and hence preluded prebiotic evolution of biomolecular homochirality. The l-enrichment of extra-terrestrial amino acids in meteorites, as opposed to no detectable excess in monocarboxylic acids and amines, has previously been attributed to their intrinsic interaction with stellar CPL revealed by substantial differences in their chiroptical signals. Recent analyses of meteoritic hydroxycarboxylic acids (HCAs) – potential co-building blocks of ancestral proto-peptides – indicated a chiral bias toward the l-enantiomer of lactic acid. Here we report on novel anisotropy spectra of several HCAs using a synchrotron radiation electronic circular dichroism spectrophotometer to support the re-evaluation of chiral biomarkers of extra-terrestrial origin in the context of absolute photochirogenesis. We found that irradiation by CPL which would yield l-excess in amino acids would also yield l-excess in aliphatic chain HCAs, including lactic acid and mandelic acid, in the examined conditions. Only tartaric acid would show “unnatural” d-enrichment, which makes it a suitable target compound for further assessing the relevance of the CPL scenario.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4587
Author(s):  
Fanny d’Orlyé ◽  
Laura Trapiella-Alfonso ◽  
Camille Lescot ◽  
Marie Pinvidic ◽  
Bich-Thuy Doan ◽  
...  

There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.


1996 ◽  
Vol 61 (2) ◽  
pp. 288-297 ◽  
Author(s):  
Vladimír Pouzar ◽  
Ivan Černý

New approach to the preparation of steroids with connecting bridge, based on an O-carboxymethyloxime (CMO) structure, and with terminal hydroxy group, is presented. 17-CMO derivatives of 3β-acetoxy- and 3β-methoxymethoxyandrost-5-en-17-one were condensed with α,ω-amino alcohols to give derivatives with a chain of seven to nine atoms. After THP-protection, these compounds were converted to 3-keto-4-ene derivatives. An alternative synthesis consisted in transformation of 17-CMO derivatives with bonded amino acids by reduction of the terminal carboxyl. The resulting compounds were designed as building blocks for the preparation of bis-haptens for sandwich immunoassays.


Author(s):  
Natalija Koprivanac ◽  
Dinko Vujevic

Organic synthetic dyes are widely produced and used today. Significant losses of organic and inorganic content occurs during the manufacturing and application of dyes and its discharge in the effluent presents a threat to the eco-systems due to general toxicity and resistance to destruction by biological treatment methods. Particularly azo dyes are of special environmental concern due to their degradation products such as aromatic amines, which are considered highly carcinogenic. So, dyes have to be removed from coloured wastewater before discharge. However, traditional treatment methods (adsorption, coagulation/flocculation) mainly transfer the contaminants from wastewater to secondary waste. Therefore, advanced oxidation processes seem to be sustainable and clean technology to decolorize and minimize organic dyes content from wastewater. In this paper, degradation of an azo dye C.I. Direct Orange 39 (DO39) using Fenton type processes (Fe2+/H2O2, Fe3+/H2O2and Fe0/H2O2) has been performed. The molar ratio of Fenton’s type reagents has been varied in the range of 1 : 5 up to 1 : 50 at 0.5 and 1.0 mM concentrations of iron salts and iron powder. Experiments have been conducted for two hours in a batch reactor with magnetic stirring, ambient conditions and pH 3. The process efficiency and formation of degradation by-products have been determined on the basis of results obtained by UV/VIS spectrophotometric, total organic carbon (TOC) and high performance liquid chromatography (HPLC) analyses. The optimal Fenton and Fenton ``like" processes parameters have been applied in the photo reactor, too. It has been observed that simultaneous utilization of UV irradiation with Fenton's and Fenton ``like" reagents increases the degradation of DO39 dye. Degradation of the dye in dilute aqueous solution follows pseudo-first order kinetics. The maximal decolourization of 20 mg L-1 DO39 in water of 93.2% and TOC degradation of 76.9% were obtained using Fe3+/H2O2= 1 : 5 molar ratio. The results indicate that the treatment of DO39 dye wastewater with UV/Fe3 +/H2O2 system was found to be the most efficient.


Sign in / Sign up

Export Citation Format

Share Document