scholarly journals Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS

2014 ◽  
Vol 14 (2) ◽  
pp. 279-289 ◽  
Author(s):  
Sascha P. Quanz ◽  
Ian Crossfield ◽  
Michael R. Meyer ◽  
Eva Schmalzl ◽  
Jenny Held

AbstractWe quantify the scientific potential for exoplanet imaging with the mid-infrared E-ELT Imager and Spectrograph (METIS) foreseen as one of the instruments of the European Extremely Large Telescope (E-ELT). We focus on two main science cases: (1) the direct detection of known gas giant planets found by radial velocity (RV) searches; and (2) the direct detection of small (1–4 R⊕) planets around the nearest stars. Under the assumptions made in our modelling, in particular on the achievable inner working angle and sensitivity, our analyses reveal that within a reasonable amount of observing time METIS is able to image >20 already known, RV-detected planets in at least one filter. Many more suitable planets with dynamically determined masses are expected to be found in the coming years with the continuation of RV-surveys and the results from the GAIA astrometry mission. In addition, by extrapolating the statistics for close-in planets found by Kepler, we expect METIS might detect ≈10 small planets with equilibrium temperatures between 200 and 500 K around the nearest stars. This means that (1) METIS will help constrain atmospheric models for gas giant planets by determining for a sizable sample their luminosity, temperature and orbital inclination; and (2) METIS might be the first instrument to image a nearby (super-) Earth-sized planet with an equilibrium temperature near that expected to enable liquid water on a planet surface.

2020 ◽  
Author(s):  
Paul Mollière ◽  

<p>Young gas giant planets still glow hot from formation, sometimes even showing signs of active accretion. Studying the atmospheres of these directly imaged planets may help placing constraints on how they formed, which may also shed light on the formation process of the planetary systems they reside in. In general, this may be achieved by connecting atmospheric to planetary composition, and planetary composition to planet formation. In my talk I will present our work that investigates the first step of this process, namely constraining the atmospheric abundances of gas giant exoplanets via free retrievals of GRAVITY, SPHERE and GPI observations. Free retrievals work by parameterizing the atmospheric structure as much as possible when calculating spectra, thereby allowing the data to constrain the atmosphere’s state. This relaxes the need for a model to fulfill given assumptions which may not accurately describe the atmospheric physics, due to modeling uncertainties and oversimplifications. At the same time caution is required because unphysical atmospheric models can potentially lead to excellent fits to spectroscopic observations. I will show why including clouds and scattering is crucial for the analysis of directly imaged planets, what the effects of using inappropriate cloud models are, and outline the next steps to develop this analysis method further.</p>


2012 ◽  
Vol 8 (S293) ◽  
pp. 183-188 ◽  
Author(s):  
Alan P. Boss ◽  
Alycia J. Weinberger ◽  
Guillem Anglada-Escudé ◽  
Ian B. Thompson ◽  
Rafael Brahm

AbstractM dwarf stars are attractive targets in the search for habitable worlds as a result of their relative abundance and proximity, making them likely targets for future direct detection efforts. Hot super-Earths as well as gas giants have already been detected around a number of early M dwarfs, and the former appear to be the high-mass end of the population of rocky, terrestrial exoplanets. The Carnegie Astrometric Planet Search (CAPS) program has been underway since March 2007, searching ~ 100 nearby late M, L, and T dwarfs for gas giant planets on orbits wide enough for habitable worlds to orbit interior to them. The CAPSCam-N camera on the 2.5-m du Pont telescope at the Las Campanas Observatory has demonstrated the ability to detect planets as low in mass as Saturn orbiting at several AU around late M dwarfs within 15 pc. Over the next decade, the CAPS program will provide new constraints on the planetary census around late M dwarf stars, and hence on the suitability of these nearby planetary systems for supporting life.


2019 ◽  
Vol 10 (5) ◽  
pp. 473-478
Author(s):  
Ahmad Gashamoglu ◽  

The Article briefly discusses the need for generation of the Science of Ahangyol, and this science’s scientific basis, object and subject, category system, scientific research methods and application options. Ahangyol is a universal science and may be useful in any sphere. It may assist in problem solving in peacemaking process and in many areas such as ecology, economics, politics, culture, management and etc. This science stipulates that any activity and any decision made in the life may only and solely be successful when they comply with harmony principles more, which are the principles of existence and activity of the world. A right strategic approach of the Eastern Philosophy and the Middle Age Islamic Philosophy and scientific thought has an important potential. This strategic approach creates opportunities to also consider irrational factors in addition to rational ones comprehensively in scientific researches. The modern scientific thought contributes to implementation of these opportunities. Ahangyol is a science of determination of ways to achieve harmony in any sphere and of creation of special methods to make progress in these ways through assistance of the modern science. Methods of the System Theory, Mathematics, IT, Astronomy, Physics, Biology, Sociology, Statistics and etc. are more extensively applied. Information is given on some of these methods. Moreover, the Science of Ahangyol, which is a new philosophical worldview and a new paradigm contributes to clarification of metaphysic views considerably and discovery of the scientific potential of religious books.


2021 ◽  
Vol 922 (1) ◽  
pp. 16
Author(s):  
Hiroshi Kobayashi ◽  
Hidekazu Tanaka

Abstract Gas-giant planets, such as Jupiter, Saturn, and massive exoplanets, were formed via the gas accretion onto the solid cores, each with a mass of roughly 10 Earth masses. However, rapid radial migration due to disk–planet interaction prevents the formation of such massive cores via planetesimal accretion. Comparably rapid core growth via pebble accretion requires very massive protoplanetary disks because most pebbles fall into the central star. Although planetesimal formation, planetary migration, and gas-giant core formation have been studied with a lot of effort, the full evolution path from dust to planets is still uncertain. Here we report the result of full simulations for collisional evolution from dust to planets in a whole disk. Dust growth with realistic porosity allows the formation of icy planetesimals in the inner disk (≲10 au), while pebbles formed in the outer disk drift to the inner disk and there grow to planetesimals. The growth of those pebbles to planetesimals suppresses their radial drift and supplies small planetesimals sustainably in the vicinity of cores. This enables rapid formation of sufficiently massive planetary cores within 0.2–0.4 million years, prior to the planetary migration. Our models shows the first gas giants form at 2–7 au in rather common protoplanetary disks, in agreement with the exoplanet and solar systems.


Author(s):  
R. U. Claudi ◽  
J. Antichi ◽  
R. G. Gratton ◽  
S. Desidera ◽  
A. Berton ◽  
...  

2007 ◽  
Vol 666 (1) ◽  
pp. 447-465 ◽  
Author(s):  
Ji‐Lin Zhou ◽  
Douglas N. C. Lin
Keyword(s):  

2019 ◽  
Vol 3 (4) ◽  
pp. 631-642 ◽  
Author(s):  
Linoj Samuel

Abstract Background Advances in medicine have improved our understanding of sepsis, but it remains a major cause of morbidity and mortality. The detection of pathogens that cause sepsis remains a challenge for clinical microbiology laboratories. Content Routine blood cultures are time-consuming and are negative in a large proportion of cases, leading to excessive use of broad-spectrum antimicrobials. Molecular testing direct from patient blood without the need for incubation has the potential to fill the gaps in our diagnostic armament and complement blood cultures to provide results in a timely manner. Currently available platforms show promise but have yet to definitively address gaps in sensitivity and specificity. Summary Significant strides have been made in the detection of pathogens directly from blood. A number of hurdles, however, remain before this technology can be adapted for routine use.


2020 ◽  
Vol 890 (1) ◽  
pp. 61 ◽  
Author(s):  
Ulrich R. Christensen ◽  
Johannes Wicht ◽  
Wieland Dietrich
Keyword(s):  

2011 ◽  
Vol 736 (2) ◽  
pp. L32 ◽  
Author(s):  
Sascha P. Quanz ◽  
Matthew A. Kenworthy ◽  
Michael R. Meyer ◽  
Julien H. V. Girard ◽  
Markus Kasper

Sign in / Sign up

Export Citation Format

Share Document