Whole grain morphology of Australian rice species

2009 ◽  
Vol 8 (1) ◽  
pp. 74-81 ◽  
Author(s):  
S. Kasem ◽  
D. L. E. Waters ◽  
N. Rice ◽  
F. M. Shapter ◽  
R. J. Henry

The grain morphology of 17 wild rice relatives were studied by light and scanning electron microscopy and compared to two cultivated rice varieties (Oryza sativa cv. Nipponbare and O. sativa cv. Teqing). Observations were made of the grain colour, size and shape. Grains from wild rice species exhibited a variety of colours that have potential aesthetic and nutritional value. The grains of these species exhibited a wide array of sizes and shapes, but still fell within the standard classification scale that rice breeders use for routine breeding evaluation. These results highlight the potential of these species as whole grain foods or as sources of novel alleles in conventional rice breeding programmes.

2017 ◽  
Vol 35 (4) ◽  
pp. 197
Author(s):  
Tintin Suhartini

<p>ABSTRACT<br />Wild rice species could be used  for improvement of rice varieties because they have a good character for resistance to biotic and abiotic stresses. Some of Indonesian wild rice species are Oryza meyeriana, O. granulata, O. longiglumis, O. officinalis, O. ridleyi, O. rufipogon and O. schlechteri. IRRI has a collection of 2,500 accesions of wild rice and 18 species were collected in ICABIOGRAD, Bogor. Some species of wild rice are known to have resistance genes to biotic and abiotic stresses. A number of<br />accessions of O.  officinalis contained resistance gene to brown planthopper, blast disease, bacterial leaf blight (BLB) and sheath rot. One of the species that has resistance to pests and diseases is O. minuta. The resistance to tungro virus occurs in O. punctata. Tolerance to drought, Al and Fe toxicities occurs in wild rice species of O. sativa genome AA group. Resistance genes from wild rice species can be inserted into cultivated rice through conventional techniques in combination with biotechnology, while gene transfer and gene detection from wild rice to cultivated rice can be done through cross breeding, molecular markers, backcrossing and embryo rescue. The success of introgression of resistance genes from wild rice species to cultivated rice will increase genetic diversity of rice. As an example O. minuta has been implemented in introgression of BLB resistance gene on IR64. Introgression of O. nivara gene in IRRI had improved some superior rice varieties in Indonesia, namely IR30, IR32, IR34, IR36 and IR38, which were tolerant to brown planthopper, dwarf virus and bacterial leaf blight. Oryza rufipogon wich has BLB and blast resistance gene has been used for improvement of new varieties Inpari Blas and Inpari HDB which were released in 2013.<br />Keywords: Oryza spp., varietal improvement, resistance genes, biotic stresses, abiotic stresses</p><p>Abstrak</p><p>Spesies padi liar dapat dimanfaatkan dalam perakitan varietas unggul karena memiliki gen ketahanan terhadap cekaman biotik dan abiotik. Spesies padi liar yang ada di Indonesia adalah Oryza meyeriana, O. granulata, O. longiglumis, O. officinalis, O. ridleyi, O. rufipogon, dan O. schlechteri. IRRI memiliki koleksi 2.500 aksesi padi liar dan 18 spesies dikoleksi di BB Biogen. Sejumlah aksesi O. officinalis memiliki gen ketahanan terhadap wereng coklat, penyakit blas, hawar daun bakteri (HDB), dan busuk pelepah. Salah satu spesies yang memiliki ketahanan terhadap hama-penyakit tersebut adalah O. minuta. Ketahanan terhadap virus tungro terdapat pada O. punctata. Toleransi terhadap kekeringan, keracunan Al, dan Fe terdapat pada spesies padi liar kelompok O. sativa genom AA. Gen ketahanan dari spesies padi liar dapat dimasukkan (introgresi) ke dalam padi budi daya melalui teknik konvensional yang dikombinasikan dengan bioteknologi, sementara transfer gen dapat melalui persilangan, marka molekuler, silang balik, dan penyelamatan embrio. Keberhasilan introgresi gen ketahanan dari spesies padi liar ke padi budi daya akan meningkatkan keragaman genetik tanaman. Spesies padi liar O. minuta telah dimanfaatkan dalam introgresi gen ketahanan HDB pada varietas IR64. Introgresi gen asal O. nivara di IRRI menambah varietas unggul di Indonesia, yaitu IR30, IR32, IR34, IR36, dan IR38, yang toleran terhadap wereng coklat, virus kerdil rumput, dan HDB. Spesies padi liar O. rufipogon yang memiliki gen ketahanan HDB dan blas telah digunakan dalam pembentukan varietas unggul baru Inpari HDB dan Inpari Blas yang dilepas pada 2013.<br /><br /></p>


2001 ◽  
Vol 67 (11) ◽  
pp. 5285-5293 ◽  
Author(s):  
Adel Elbeltagy ◽  
Kiyo Nishioka ◽  
Tadashi Sato ◽  
Hisa Suzuki ◽  
Bin Ye ◽  
...  

ABSTRACT Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum,Ideonella, Enterobacter, andAzospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2gas incorporation assays. Therefore, we conclude thatHerbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis.


2019 ◽  
Author(s):  
Jyotirmaya Mathan ◽  
Anuradha Singh ◽  
Vikram Jathar ◽  
Aashish Ranjan

AbstractThe importance of increasing photosynthetic efficiency for sustainable crop yield increases to feed the growing world population is well recognized. The natural genetic variation for leaf photosynthesis in crop plants is largely unexploited for increasing genetic yield potential. The genus Oryza, including cultivated rice and wild relatives, offers tremendous genetic variability to explore photosynthetic differences, and underlying biochemical, photochemical, and developmental basis. We quantified leaf photosynthesis and related physiological parameters for six cultivated and three wild rice genotypes, and identified photosynthetically efficient wild rice species. Fitting A/Ci curves followed by experimental validation showed that the leaf photosynthesis in cultivated rice varieties, IR64 and Nipponbare, was limited due to Rubisco activity and electron transport rate, compared to photosynthetically efficient wild rice species, Oryza australiensis and Oryza latifolia. The selected wild rice species with high leaf photosynthesis per unit area had striking anatomical features, such as larger mesophyll cells with more chloroplasts, larger and closer veins, and fewer mesophyll cells between two consecutive veins. Our results show the existence of desirable variations in Rubisco activity, electron transport rate, and mesophyll and vein features in the rice system itself that could possibly be targeted for increasing the photosynthetic efficiency of cultivated rice varieties.HighlightDistinct leaf biochemical, photochemical, and developmental features contribute to efficient photosynthesis in the selected wild rice that could potentially be exploited for increasing rice leaf photosynthesis.


2004 ◽  
Vol 7 (3) ◽  
pp. 252-259 ◽  
Author(s):  
Chisato Masumoto ◽  
Takashige Ishii ◽  
Sono Kataoka ◽  
Tomoko Hatanaka ◽  
Naotsugu Uchida

2005 ◽  
Vol 47 (10) ◽  
pp. 1260-1270 ◽  
Author(s):  
Zai-Quan CHENG ◽  
Xing-Qi HUANG ◽  
Yi-Zheng ZHANG ◽  
Jun QIAN ◽  
Ming-Zhi YANG ◽  
...  

2020 ◽  
Author(s):  
Lei Tian ◽  
Jingjing Chang ◽  
Shaohua Shi ◽  
Li Ji ◽  
Jianfeng Zhang ◽  
...  

Abstract Background Rice root-inhabited microbial communities are seriously affected by domestication as evidenced by comparing the rhizomicrobiomes of wild and related cultivated rice species. While earlier studies focused on the structures of the rhizomicrobiomes, here, we compared the functioning of the microbial communities in the rhizosphere of wild versus that of related cultivated rice species, which were originated from Africa and Asia. Results The microbial functions involved in carbon metabolism and nucleotide metabolism were found to be enriched in wild rice species, whereas those involved in nitrogen metabolism, lipid metabolism, metabolism of cofactors and vitamins, and xenobiotic biodegradation were more enriched in cultivated rice species. Among the overall carbon metabolism, specifically, methane metabolism of the rhizomicrobiomes clearly differed between wild and cultivated rice. The key enzymes in methane production and utilization were overrepresented in wild rice species, suggesting that the rhizomicrobiome of wild rice maintained a better ecological balance for methane production and utilization than the related cultivated rice species. Conclusions For the first time, the impacts of rice domestication on the main metabolic pathways of the rhizomicrobiome were assessed, which revealed the strong impacts of rice domestication on methane metabolism that is one of the most critical functions of the microbial community of the rhizosphere of rice. The results provide important guidelines for future breeding and cultivation of rice in the framework of more sustainable rice production.


2019 ◽  
Vol 17 (5) ◽  
pp. 448-451
Author(s):  
Fantao Zhang ◽  
Yuan Luo ◽  
Bin Ai ◽  
Yong Chen ◽  
Weidong Qi ◽  
...  

AbstractDongxiang common wild rice (Oryza rufipogon Griff., DXWR) is an important genetic resource for the improvement of cultivated rice. For the past three decades, great achievements have been made in the field of molecular marker development. Although structural variations (SVs) had been studied between DXWR and Nipponbare (Oryza sativa L. ssp. japonica), the development and application of SV markers in DXWR has not been reported. In this study, based on the genome-wide SV loci, we developed and synthesized a total of 195 SV markers that were evenly distributed across the 12 rice chromosomes. Then, these markers were tested for their stabilities and polymorphisms. Of these 195 markers, 147 (75.4%) were successfully amplified and displayed abundant polymorphisms between DXWR and Nipponbare. Meanwhile, through the genotyping of 20 rice varieties from 13 countries and areas, we concluded that these SV markers have a wide application prospect in the analysis of cultivated rice. Therefore, these molecular markers greatly enrich the number of markers available for DXWR, which will facilitate genomic research and molecular breeding for this important and endangered germplasm resource.


Author(s):  
Jeyabalan Sangeetha ◽  
Jasmin Habeeb ◽  
Devarajan Thangadurai ◽  
Jadhav Mulji Alabhai ◽  
Ravichandra Hospet ◽  
...  

2016 ◽  
Vol 15 (5) ◽  
pp. 409-420 ◽  
Author(s):  
Tiparat Tikapunya ◽  
Glen Fox ◽  
Agnelo Furtado ◽  
Robert Henry

AbstractRice yield improvement is required to support increasing global rice demand. However, the limited genetic diversity within the cultivated rice gene pool may be a major obstacle. Australian wild rice which has been largely genetically isolated from cultivated rice might be a new source of genetic variation for use in improving rice production. The physical properties of Oryza australiensis and of the two perennial Australian Wild rice taxa-belonging to the A genome wild rice were evaluated. Seeds collected from rice in the wild were generally smaller than those from domesticated rice. The wild rice A genome collections were classified as extra-long paddy rice with grains that were long or medium, while O. australiensis was categorized as long paddy rice with a short grain. However, these wild rices were slender compared with domesticated rice. The grain colour of these wild rices varied from light red brown to dark brown compared with domesticated rice which is brighter, with less redness and more yellowness than the wild rice. The physical characteristics of the grains of the Australian wild rice indicate that these rice grains may be successfully processed using current rice processing techniques and may be a useful novel food especially in the coloured rice market.


Sign in / Sign up

Export Citation Format

Share Document