scholarly journals Comparison between wild and related cultivated rice species reveals strong impacts of crop domestication on methane metabolism of the rhizomicrobiome

2020 ◽  
Author(s):  
Lei Tian ◽  
Jingjing Chang ◽  
Shaohua Shi ◽  
Li Ji ◽  
Jianfeng Zhang ◽  
...  

Abstract Background Rice root-inhabited microbial communities are seriously affected by domestication as evidenced by comparing the rhizomicrobiomes of wild and related cultivated rice species. While earlier studies focused on the structures of the rhizomicrobiomes, here, we compared the functioning of the microbial communities in the rhizosphere of wild versus that of related cultivated rice species, which were originated from Africa and Asia. Results The microbial functions involved in carbon metabolism and nucleotide metabolism were found to be enriched in wild rice species, whereas those involved in nitrogen metabolism, lipid metabolism, metabolism of cofactors and vitamins, and xenobiotic biodegradation were more enriched in cultivated rice species. Among the overall carbon metabolism, specifically, methane metabolism of the rhizomicrobiomes clearly differed between wild and cultivated rice. The key enzymes in methane production and utilization were overrepresented in wild rice species, suggesting that the rhizomicrobiome of wild rice maintained a better ecological balance for methane production and utilization than the related cultivated rice species. Conclusions For the first time, the impacts of rice domestication on the main metabolic pathways of the rhizomicrobiome were assessed, which revealed the strong impacts of rice domestication on methane metabolism that is one of the most critical functions of the microbial community of the rhizosphere of rice. The results provide important guidelines for future breeding and cultivation of rice in the framework of more sustainable rice production.

2009 ◽  
Vol 8 (1) ◽  
pp. 74-81 ◽  
Author(s):  
S. Kasem ◽  
D. L. E. Waters ◽  
N. Rice ◽  
F. M. Shapter ◽  
R. J. Henry

The grain morphology of 17 wild rice relatives were studied by light and scanning electron microscopy and compared to two cultivated rice varieties (Oryza sativa cv. Nipponbare and O. sativa cv. Teqing). Observations were made of the grain colour, size and shape. Grains from wild rice species exhibited a variety of colours that have potential aesthetic and nutritional value. The grains of these species exhibited a wide array of sizes and shapes, but still fell within the standard classification scale that rice breeders use for routine breeding evaluation. These results highlight the potential of these species as whole grain foods or as sources of novel alleles in conventional rice breeding programmes.


2004 ◽  
Vol 7 (3) ◽  
pp. 252-259 ◽  
Author(s):  
Chisato Masumoto ◽  
Takashige Ishii ◽  
Sono Kataoka ◽  
Tomoko Hatanaka ◽  
Naotsugu Uchida

2020 ◽  
Author(s):  
Weihua Qiao ◽  
Yanyan Wang ◽  
Rui Xu ◽  
Ziyi Yang ◽  
Yan Sun ◽  
...  

AbstractAccumulation of anthocyanin is a desirable trait to be selected in rice domestication, but the molecular mechanism of anthocyanin biosynthesis in rice remains largely unknown. In this study, a novel allele of chromogen gene C, OrC1, from Oryza rufipongon was cloned and identified as a determinant regulator of anthocyanin biosynthesis. Although OrC1 functions in purple apiculus, leaf sheath and stigma in indica background, it only promotes purple apiculus in japonica. Transcriptome analysis revealed that OrC1 regulates flavonoid biosynthesis pathway and activates a few bHLH and WD40 genes of ternary MYB-bHLH-WD40 complex in indica. Differentially expressed genes and metabolites were found in the indica and japonica backgrounds, indicating that OrC1 activated the anthocyanin biosynthetic genes OsCHI, OsF3H, OsANS, OsINS and OsANR and produced six metabolites independently. Artificial selection and domestication of C1 gene in rice occurred on the coding region in the two subspecies independently. Our results reveal the regulatory system and domestication of C1, provide new insights into MYB transcript factor involved in anthocyanin biosynthesis, and show the potential of engineering anthocyanin biosynthesis in rice.Author summaryAccumulation of anthocyanin is a selection trait in rice domestication, whereas the mechanisms regulating the anthocyanin biosynthetic pathway in rice remain unresolved. Here, a novel allele of chromogen gene C from wild rice (Oryza rufipongon) was identified as a determinant regulator of anthocyanin biosynthesis. A key question is to what extent the involvement of the C1 gene can explain coloration variability of cultivated rice, where anthocyanin accumulation has been eliminated by artificial selection. Our results reveal the functional chromogen gene C from wild rice causes different coloration phenotypes, regulates various anthocyanin biosynthetic genes and produces different metabolites in indica and japonica. Artificial selection and domestication of the C1 gene in rice only occurs within the coding region of the two subspecies independently.


2017 ◽  
Vol 35 (4) ◽  
pp. 197
Author(s):  
Tintin Suhartini

<p>ABSTRACT<br />Wild rice species could be used  for improvement of rice varieties because they have a good character for resistance to biotic and abiotic stresses. Some of Indonesian wild rice species are Oryza meyeriana, O. granulata, O. longiglumis, O. officinalis, O. ridleyi, O. rufipogon and O. schlechteri. IRRI has a collection of 2,500 accesions of wild rice and 18 species were collected in ICABIOGRAD, Bogor. Some species of wild rice are known to have resistance genes to biotic and abiotic stresses. A number of<br />accessions of O.  officinalis contained resistance gene to brown planthopper, blast disease, bacterial leaf blight (BLB) and sheath rot. One of the species that has resistance to pests and diseases is O. minuta. The resistance to tungro virus occurs in O. punctata. Tolerance to drought, Al and Fe toxicities occurs in wild rice species of O. sativa genome AA group. Resistance genes from wild rice species can be inserted into cultivated rice through conventional techniques in combination with biotechnology, while gene transfer and gene detection from wild rice to cultivated rice can be done through cross breeding, molecular markers, backcrossing and embryo rescue. The success of introgression of resistance genes from wild rice species to cultivated rice will increase genetic diversity of rice. As an example O. minuta has been implemented in introgression of BLB resistance gene on IR64. Introgression of O. nivara gene in IRRI had improved some superior rice varieties in Indonesia, namely IR30, IR32, IR34, IR36 and IR38, which were tolerant to brown planthopper, dwarf virus and bacterial leaf blight. Oryza rufipogon wich has BLB and blast resistance gene has been used for improvement of new varieties Inpari Blas and Inpari HDB which were released in 2013.<br />Keywords: Oryza spp., varietal improvement, resistance genes, biotic stresses, abiotic stresses</p><p>Abstrak</p><p>Spesies padi liar dapat dimanfaatkan dalam perakitan varietas unggul karena memiliki gen ketahanan terhadap cekaman biotik dan abiotik. Spesies padi liar yang ada di Indonesia adalah Oryza meyeriana, O. granulata, O. longiglumis, O. officinalis, O. ridleyi, O. rufipogon, dan O. schlechteri. IRRI memiliki koleksi 2.500 aksesi padi liar dan 18 spesies dikoleksi di BB Biogen. Sejumlah aksesi O. officinalis memiliki gen ketahanan terhadap wereng coklat, penyakit blas, hawar daun bakteri (HDB), dan busuk pelepah. Salah satu spesies yang memiliki ketahanan terhadap hama-penyakit tersebut adalah O. minuta. Ketahanan terhadap virus tungro terdapat pada O. punctata. Toleransi terhadap kekeringan, keracunan Al, dan Fe terdapat pada spesies padi liar kelompok O. sativa genom AA. Gen ketahanan dari spesies padi liar dapat dimasukkan (introgresi) ke dalam padi budi daya melalui teknik konvensional yang dikombinasikan dengan bioteknologi, sementara transfer gen dapat melalui persilangan, marka molekuler, silang balik, dan penyelamatan embrio. Keberhasilan introgresi gen ketahanan dari spesies padi liar ke padi budi daya akan meningkatkan keragaman genetik tanaman. Spesies padi liar O. minuta telah dimanfaatkan dalam introgresi gen ketahanan HDB pada varietas IR64. Introgresi gen asal O. nivara di IRRI menambah varietas unggul di Indonesia, yaitu IR30, IR32, IR34, IR36, dan IR38, yang toleran terhadap wereng coklat, virus kerdil rumput, dan HDB. Spesies padi liar O. rufipogon yang memiliki gen ketahanan HDB dan blas telah digunakan dalam pembentukan varietas unggul baru Inpari HDB dan Inpari Blas yang dilepas pada 2013.<br /><br /></p>


2001 ◽  
Vol 67 (11) ◽  
pp. 5285-5293 ◽  
Author(s):  
Adel Elbeltagy ◽  
Kiyo Nishioka ◽  
Tadashi Sato ◽  
Hisa Suzuki ◽  
Bin Ye ◽  
...  

ABSTRACT Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum,Ideonella, Enterobacter, andAzospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2gas incorporation assays. Therefore, we conclude thatHerbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis.


2019 ◽  
Author(s):  
Jyotirmaya Mathan ◽  
Anuradha Singh ◽  
Vikram Jathar ◽  
Aashish Ranjan

AbstractThe importance of increasing photosynthetic efficiency for sustainable crop yield increases to feed the growing world population is well recognized. The natural genetic variation for leaf photosynthesis in crop plants is largely unexploited for increasing genetic yield potential. The genus Oryza, including cultivated rice and wild relatives, offers tremendous genetic variability to explore photosynthetic differences, and underlying biochemical, photochemical, and developmental basis. We quantified leaf photosynthesis and related physiological parameters for six cultivated and three wild rice genotypes, and identified photosynthetically efficient wild rice species. Fitting A/Ci curves followed by experimental validation showed that the leaf photosynthesis in cultivated rice varieties, IR64 and Nipponbare, was limited due to Rubisco activity and electron transport rate, compared to photosynthetically efficient wild rice species, Oryza australiensis and Oryza latifolia. The selected wild rice species with high leaf photosynthesis per unit area had striking anatomical features, such as larger mesophyll cells with more chloroplasts, larger and closer veins, and fewer mesophyll cells between two consecutive veins. Our results show the existence of desirable variations in Rubisco activity, electron transport rate, and mesophyll and vein features in the rice system itself that could possibly be targeted for increasing the photosynthetic efficiency of cultivated rice varieties.HighlightDistinct leaf biochemical, photochemical, and developmental features contribute to efficient photosynthesis in the selected wild rice that could potentially be exploited for increasing rice leaf photosynthesis.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 880
Author(s):  
Masato Ejiri ◽  
Yuto Sawazaki ◽  
Katsuhiro Shiono

A barrier to radial oxygen loss (ROL), which reduces the loss of oxygen transported via the aerenchyma to the root tips, enables the roots of wetland plants to grow into anoxic/hypoxic waterlogged soil. However, little is known about its genetic regulation. Quantitative trait loci (QTLs) mapping can help to understand the factors that regulate barrier formation. Rice (Oryza sativa) inducibly forms an ROL barrier under stagnant conditions, while a few wetland plants constitutively form one under aerated conditions. Here, we evaluated the formation of a constitutive ROL barrier in a total of four accessions from two wild rice species. Three of the accessions were wetland accessions of O. glumaepatula, and the fourth was a non-wetland species of O. rufipogon. These species have an AA type genome, which allows them to be crossed with cultivated rice. The three O. glumaepatula accessions (W2165, W2149, and W1183) formed an ROL barrier under aerated conditions. The O. rufipogon accession (W1962) did not form a constitutive ROL barrier, but it formed an inducible ROL barrier under stagnant conditions. The three O. glumaepatula accessions should be useful for QTL mapping to understand how a constitutive ROL barrier forms. The constitutive barrier of W2165 was closely associated with suberization and resistance to penetration by an apoplastic tracer (periodic acid) at the exodermis but did not include lignin at the sclerenchyma.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lei Tian ◽  
Enze Wang ◽  
Xiaolong Lin ◽  
Li Ji ◽  
Jingjing Chang ◽  
...  

Abstract Background Rice, which serves as a staple food for more than half of the world’s population, is grown worldwide. The hybridization of wild and cultivated rice has enabled the incorporation of resistance to varying environmental conditions. Endophytic microbiota are known to be transferred with their host plants. Although some studies have reported on the endophytic microbiota of wild and cultivated rice, the inheritance from wild and cultivated rice accessions in next generations, in terms of endophytic microbiota, has not been examined. Results In the present study, the endophytic microbial community structures of Asian and African wild and cultivated rice species were compared with those of their F1 offspring. High-throughput sequencing data of bacterial 16S rDNA and fungal internal transcribed spacer regions were used to classify the endophytic microbiota of collected samples of rice. Results indicated that when either African or Asian wild rice species were crossed with cultivated rice accessions, the first generation harbored a greater number of root endophytic fungi than the cultivated parent used to make the crosses. Network analysis of the bacterial and fungal operational taxonomic units revealed that Asian and African wild rice species clustered together and exhibited a greater number of significant correlations between fungal taxa than cultivated rice. The core bacterial genus Acidovorax and the core fungal order Pleosporales, and genera Myrothecium and Bullera connected African and Asian wild rice accessions together, and both the wild rice accessions with their F1 offspring. On the other hand, the core bacterial genus Bradyrhizobium and the core fungal genera Dendroclathra linked the African and Asian cultivated rice accessions together. Conclusions This study has theoretical significance for understanding the effect of breeding on the inheritance of endophytic microbiota of rice and identifying beneficial endophytic bacteria and fungi among wild and cultivated rice species, and their F1 offspring.


2011 ◽  
Vol 108 ◽  
pp. 167-175 ◽  
Author(s):  
Qing Gui Zeng ◽  
Fei Luo ◽  
Zhi Bin Zhang ◽  
Ri Ming Yan ◽  
Du Zhu

The capability of bacterial strain T21 isolated from Dongxiang wild rice (Oryza rufipogon) rhizosphere to behave as plant growth promoting bacteria (PGPB) was investigated. Rhizosphere bacteria T21 showed P-solubilizing capability when cultured in the PVK medium amended with tricalcium phosphate. The strain T21 also showed nitrogen-fixing activity in N-free medium, and produced indole-3-acetic (IAA) and siderophore. The strain T21 was identified as Pantoea agglomerans by morphology, physiological and biochemical properties, and 16S rDNA sequence analysis. The strain T21 was formulated as an inoculant in order to evaluate its growth promotion effect in the field when applied on the cultivated rice at the sowing time. It showed a significant plant growth-promoting effect on seedling length, root length, fresh weight and dry weight of the cultivated rice (Oryza sativa). These findings fetched us to conclude that wild rice rhizospheric microorganism Pantoea agglomerans T21 could stimulate the growth of cultivated rice in vivo in poor soil.


Sign in / Sign up

Export Citation Format

Share Document