Genetic diversity and evolution of Brassica genetic resources: from morphology to novel genomic technologies – a review

2016 ◽  
Vol 15 (5) ◽  
pp. 388-399 ◽  
Author(s):  
Mohamed A. El-Esawi

AbstractBrassica species have an economic and medicinal importance. Estimation of the amount and distribution of genetic diversity within Brassica species is essential for establishing efficient management, conservation and breeding practices. This review discusses the taxonomy, gene pool, and Brassica-derived phytochemicals and their nutraceutical importance. It also surveys the recently advanced studies of the genetic diversity and phylogenetic studies of Brassica species at the level of morphological, cytological, biochemical and molecular markers that have proven to be useful for evaluating the genetic variation, taxonomic relationships and species identity, and could be useful for improving Brassica crops through future promising breeding programmes.

Author(s):  
S. P. Jeevan Kumar ◽  
C. Susmita ◽  
K. V. Sripathy ◽  
Dinesh K. Agarwal ◽  
Govind Pal ◽  
...  

Abstract Background The genetic base of soybean cultivars in India has been reported to be extremely narrow, due to repeated use of few selected and elite genotypes as parents in the breeding programmes. This ultimately led to the reduction of genetic variability among existing soybean cultivars and stagnation in crop yield. Thus in order to enhance production and productivity of soybean, broadening of genetic base and exploring untapped valuable genetic diversity has become quite indispensable. This could be successfully accomplished through molecular characterization of soybean genotypes using various DNA based markers. Hence, an attempt was made to study the molecular divergence and relatedness among 29 genotypes of soybean using SSR markers. Methods and results A total of 35 SSR primers were deployed to study the genetic divergence among 29 genotypes of soybean. Among them, 14 primer pairs were found to be polymorphic producing a total of 34 polymorphic alleles; and the allele number for each locus ranged from two to four with an average of 2.43 alleles per primer pair. Polymorphic information content (PIC) values of SSRs ranged from 0.064 to 0.689 with an average of 0.331. The dendrogram constructed based on dissimilarity indices clustered the 29 genotypes into two major groups and four sub-groups. Similarly, principal coordinate analysis grouped the genotypes into four major groups that exactly corresponded to the clustering of genotypes among four sub-groups of dendrogram. Besides, the study has reported eight unique and two rare alleles that could be potentially utilized for genetic purity analysis and cultivar identification in soybean. Conclusion In the present investigation, two major clusters were reported and grouping of large number of genotypes in each cluster indicated high degree of genetic resemblance and narrow genetic base among the genotypes used in the study. With respect to the primers used in the study, the values of PIC and other related parameters revealed that the selected SSR markers are moderately informative and could be potentially utilized for diversity analysis of soybean. The clustering pattern of dendrogram constructed based on SSR loci profile displayed good agreement with the cultivar’s pedigree information. High level of genetic similarity observed among the genotypes from the present study necessitates the inclusion of wild relatives, land races and traditional cultivars in future soybean breeding programmes to widen the crop gene pool. Thus, hybridization among diverse gene pool could result in more heterotic combinations ultimately enhancing genetic gain, crop yield and resistance to various stress factors.


2007 ◽  
Vol 67 (4 suppl) ◽  
pp. 939-943 ◽  
Author(s):  
PD. Freitas ◽  
MR. Calgaro ◽  
PM. Galetti Jr.

Genetic variation within and between fifteen closed broodstock lines of the Pacific white shrimp Litopenaeus vannamei, reared at different hatcheries in the Brazilian coast, was assessed by RAPD analysis. Fifty two polymorphic loci were identified when a set of five decamer primers was used in PCR. The genetic diversity analysis within lines evidenced genetic variation loss probably related to bottleneck effects and inbreeding. In addition, the genetic divergence values between the different samples appear to reflect the initial founder composition of such stocks, in some cases, sharing a common origin, suggesting a putative importance of interbreeding for the establishment of genetic improvement programs for these broodstocks. The genetic variation monitoring appears to be helpful to the gene pool conservation of this aquaculture species, mainly if considered its exotic status in Brazil and the current impossibility of new introduction of wild individuals.


2018 ◽  
Vol 28 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Abbas Saidi ◽  
Zahra Daneshvar ◽  
Zohreh Hajibarat

To evaluate the genetic diversity among 10 cultivars of anthurium were performed using three molecular markers such as Start Codon Targeted (SCoT) and Conserved DNA-derived Polymorphism (CDDP), and Random Amplification of Polymorphic DNA (RAPD). Polymorphism index content (PIC) was calculated 0.39, 0.42 and 0.37 for RAPD, SCoT and CDDP, respectively. This result showed all the three molecular markers had almost an identical potential in estimating genetic diversity. Cluster analysis using SCoT, CDDP and RAPD divided the cultivars to three distinct clusters. The similarity matrix obtained through SCoT and CDDP was positively significantly correlated (r = 0.76, p < 0.01). This is the first report in which the efficiency of two targeted DNA region molecular markers (SCoT and CDDP) together with RAPD technique have been compared with each other in a set of anthurium cultivras. Results suggested that SCOT, CDDP and RAPD fingerprinting techniques are of sufficient ability to detect polymorphism in anthurium cultivars. Plant Tissue Cult. & Biotech. 28(2): 171-182, 2018 (December)


2010 ◽  
Vol 46 (Special Issue) ◽  
pp. S54-S56 ◽  
Author(s):  
J. Cunha ◽  
M. Teixeira Santos ◽  
J. Brazăo ◽  
L.C. Carneiro ◽  
M. Veloso ◽  
...  

To assess the different origins of Portuguese grapevine varieties, we used six nuclear and four chloroplastidal microsatellites as molecular markers, in order to compare the genetic structure of native wild-vines with native grapevine varieties. Both native subspecies have a great diversity, and a high interrelationship across the six nuclear microsatellites. Although identical numbers of alleles were found in each population, their distribution was different in the <I>vinifera </I>and <I>sylvestris </I>subspecies. Portuguese wild-vines have only chlorotypes A and B; A being the most frequent. The fifty-seven analysed Portuguese varieties have chlorotypes A, B, C, and D. The most frequent was the chlorotype A (75%), followed by D (21%). The results obtained reinforced the idea of Western Europe as having been one of the domestication centres for the grapevine, with contributions from the Eastern European gene pool. The observed genetic structure is a starting point from which to clarify the high number of native cultivars found in Portugal, and reinforces their probable origin in the Iberian Peninsula.


Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


2010 ◽  
Vol 8 (2) ◽  
pp. 171-181 ◽  
Author(s):  
C. C. M. van de Wiel ◽  
T. Sretenović Rajičić ◽  
R. van Treuren ◽  
K. J. Dehmer ◽  
C. G. van der Linden ◽  
...  

Genetic variation in Lactuca serriola, the closest wild relative of cultivated lettuce, was studied across Europe from the Czech Republic to the United Kingdom, using three molecular marker systems, simple sequence repeat (SSR, microsatellites), AFLP and nucleotide-binding site (NBS) profiling. The ‘functional’ marker system NBS profiling, targeting disease resistance genes of the NBS/LRR family, did not show marked differences in genetic diversity parameters to the other systems. The autogamy of the species resulted in low observed heterozygosity and high population differentiation. Intra-population variation ranged from complete homogeneity to nearly complete heterogeneity. The highest genetic diversity was found in central Europe. The SSR results were compared to SSR variation screened earlier in the lettuce collection of the Centre for Genetic Resources, the Netherlands (CGN). In the UK, practically only a single SSR genotype was found. This genotype together with a few other common SSR genotypes comprised a large part of the plants sampled on the continent. Among the ten most frequent SSR genotypes observed, eight were already present in the CGN collection. Overall, the CGN collection appears to already have a fair representation of genetic variation from NW Europe. The results are discussed in relation to sampling strategies for improving genebank collections of crop wild relatives.


2016 ◽  
Vol 15 (6) ◽  
pp. 539-547 ◽  
Author(s):  
P. Sharma ◽  
S. Sareen ◽  
M. Saini ◽  
Shefali

AbstractHeat stress greatly limits the productivity of wheat in many regions. Knowledge on the degree of genetic diversity of wheat varieties along with their selective traits will facilitate the development of high yielding, stress-tolerant wheat cultivar. The objective of this study were to determine genetic variation in morpho-physiological traits associated with heat tolerance in 30 diverse wheat genotypes and to examine genetic diversity and relationship among the genotypes varying heat tolerance using molecular markers. Phenotypic data of 15 traits were evaluated for heat tolerance under non-stress and stress conditions for two consecutive years. A positive and significant correlation among cell membrane stability, canopy temperature depression, biomass, susceptibility index and grain yield was shown. Genetic diversity assessed by 41 polymorphic simple sequence repeat (SSR) markers was compared with diversity evaluated for 15 phenotypic traits averaged over stress and non-stress field conditions. The mean polymorphic information content for SSR value was 0.38 with range of 0.12–0.75. Based on morpho-physiological traits and genotypic data, three groups were obtained based on their tolerance (HHT, MHT and LHT) levels. Analysis of molecular variance explained 91.7% of the total variation could be due to variance within the heat tolerance genotypes. Genetic diversity among HHT was higher than LHT genotypes and HHT genotypes were distributed among all cluster implied that genetic basis of heat tolerance in these genotypes was different thereby enabling the wheat breeders to combine these diverse sources of genetic variation to improve heat tolerance in wheat breeding programme.


2014 ◽  
Vol 955-959 ◽  
pp. 830-833
Author(s):  
Zhou Xuan ◽  
Zheng Hong Li ◽  
Cheng Zhang ◽  
Hong Dao Zhang ◽  
Ji Lin Li ◽  
...  

The conservation and use of plant genetic diversity are essential to the continued maintenance and improvement of agricultural and forestry production and thus, to sustainable development and poverty alleviation. The dramatic advances in molecular genetics over the last decade years have provided workers involved in the conservation of plant genetic diversity with a range of new techniques. Molecular tools, such as molecular markers and other genomic applications, have been highly successful in characterizing existing genetic variation within species, which generates new genetic diversity that often extends beyond species boundaries. The objectives of this article are to review the molecular basis on plant genetic diversity conservation and summarize the continuously rising and application of molecular tool. Then, we look forward and consider the significant of application of molecular tools in plant genetic diversity conservation.


2003 ◽  
Vol 1 (1) ◽  
pp. 43-57 ◽  
Author(s):  
C. S. Srinivasan ◽  
Colin Thirtle ◽  
Paolo Palladino

AbstractGenealogical data have been used very widely to construct indices with which to examine the contribution of plant breeding programmes to the maintenance and enhancement of genetic resources. In this paper we use such indices to examine changes in the genetic diversity of the winter wheat crop in England and Wales between 1923 and 1995. We find that, except for one period characterized by the dominance of imported varieties, the genetic diversity of the winter wheat crop has been remarkably stable. This agrees with many studies of plant breeding programmes elsewhere. However, underlying the stability of the winter wheat crop is accelerating varietal turnover without any significant diversification of the genetic resources used. Moreover, the changes we observe are more directly attributable to changes in the varietal shares of the area under winter wheat than to the genealogical relationship between the varieties sown. We argue, therefore, that while genealogical indices reflect how well plant breeders have retained and exploited the resources with which they started, these indices suffer from a critical limitation. They do not reflect the proportion of the available range of genetic resources which has been effectively utilized in the breeding programme: complex crosses of a given set of varieties can yield high indices, and yet disguise the loss (or non-utilization) of a large proportion of the available genetic diversity.


2020 ◽  
Vol 21 (2) ◽  
Author(s):  
ALFI FAUZAN IRSYAD ◽  
Ridesti Rindyastuti ◽  
TITUT YULISTYARINI ◽  
AGUNG SRI DARMAYANTI ◽  
BUDI SETIADI DARYONO

Abstract. Irsyad AF, Rindyaastuti R, Yulistyarini T, Darmayanti AS, Daryono BS. 2020. Genetic variation of agarwood producing tree (Gyrinops versteegii) from Pongkor, Manggarai District, Flores Island, Indonesia using ISSR molecular markers. Biodiversitas 21: xxxx. Agarwood is a black-colored tree wood that produces distinctive sap because of fungal infections which belong to Thymelaeaceae family (mainly Aquilaria and Gyrinops). Agarwood product is highly valuable that leading to over exploitations by the collectors. To develop the most effective and efficient conservation strategies, genetic information from these plants is required. The aims of this research are to determine the genetic variation and to confirm the species identity of agarwood producing tree (Gyrinops versteegii (Gilg.) Domke) population in Pongkor Community Forest, Pongkor, Manggarai District, Flores Island, East Nusa Tenggara. Information of the genetic variation, as well as the phenetic relatedness, were evaluated with inter-simple sequence repeat molecular marker (ISSR) using five primers; Ng2.01, Ng2.06, Ng3.01, Ng3.02, and UBC 855, with two other agarwood producing species as outgroup (Aquilaria filaria and Gyrinops decipiens). Amplified bands from all primers showed 55.17% polymorphic bands in G. versteegii. Genetic variation of G. versteegii identified with Nei’s genetic diversity (h value) obtained at 0.218. Clustering analysis from UPGMA dendrograms formed three major clusters. Degree of similarity of G. versteegii based on the dendrograms obtained at 85.9% using SSM method. The results showed close phenetic relatedness between individuals and relatively high genetic variation of G. versteegii, however, imply the need for strictly maintenance of habitat preservation and larger population size.


Sign in / Sign up

Export Citation Format

Share Document