Association mapping of genomic loci linked with Fusarium wilt resistance (Foc2) in chickpea

2021 ◽  
pp. 1-8
Author(s):  
Uday Chand Jha ◽  
Rintu Jha ◽  
Abhishek Bohra ◽  
Lakshmaiah Manjunatha ◽  
Parasappa Rajappa Saabale ◽  
...  

Abstract Improving plant resistance against Fusarium wilt (FW) is key to sustaining chickpea production worldwide. Given this, the current study tested a set of 75 FW-responsive chickpea breeding lines including checks in a wilt-sick plot for two consecutive years (2016 and 2017). Genetic diversity analysis using 75 simple sequence repeats (SSRs) revealed a total of 267 alleles with an average of 3.56 alleles per marker. The entire set was divided into two major classes based on clustering method and factorial analysis. Similarly, STRUCTURE analysis placed the 75 genotypes into three distinct sub-groups (K = 3). Marker-trait association (MTA) analysis using the generalized linear model approach revealed nine and eight significant MTAs for FW resistance in the years 2016 and 2017, respectively. Three significant MTAs were obtained for FW resistance following the mixed linear model approach for both years. The SSR markers CESSR433, NCPGR21 and ICCM0284 could be potentially employed for targeted and accelerated improvement of FW resistance in chickpea. To the best of our knowledge, this is the first report on association mapping of the genomic loci controlling FW (Foc2) resistance in chickpea.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246232
Author(s):  
S. Pawar ◽  
E. Pandit ◽  
I. C. Mohanty ◽  
D. Saha ◽  
S. K. Pradhan

Iron (Fe) toxicity is a major abiotic stress which severely reduces rice yield in many countries of the world. Genetic variation for this stress tolerance exists in rice germplasms. Mapping of gene(s)/QTL controlling the stress tolerance and transfer of the traits into high yielding rice varieties are essential for improvement against the stress. A panel population of 119 genotypes from 352 germplasm lines was constituted for detecting the candidate gene(s)/QTL through association mapping. STRUCTURE, GenAlEx and Darwin softwares were used to classify the population. The marker-trait association was detected by considering both the Generalized Linear Model (GLM) and Mixed Linear Model (MLM) analyses. Wide genetic variation was observed among the genotypes present in the panel population for the stress tolerance. Linkage disequilibrium was detected in the population for iron toxicity tolerance. The population was categorized into three genetic structure groups. Marker-trait association study considering both the Generalized Linear Model (GLM) and Mixed Linear Model (MLM) showed significant association of leaf browning index (LBI) with markers RM471, RM3, RM590 and RM243. Three novel QTL controlling Fe-toxicity tolerance were detected and designated as qFeTox4.3, qFeTox6.1 and qFeTox10.1. A QTL reported earlier in the marker interval of C955-C885 on chromosome 1 is validated using this panel population. The present study showed that QTL controlling Fe-toxicity tolerance to be co-localized with the QTL for Fe-biofortification of rice grain indicating involvement of common pathway for Fe toxicity tolerance and Fe content in rice grain. Fe-toxicity tolerance QTL qFeTox6.1 was co-localized with grain Fe-biofortification QTLs qFe6.1 and qFe6.2 on chromosome 6, whereas qFeTox10.1 was co-localized with qFe10.1 on chromosome 10. The Fe-toxicity tolerance QTL detected from this mapping study will be useful in marker-assisted breeding programs.


2020 ◽  
Vol 191 ◽  
pp. 110106 ◽  
Author(s):  
Jônatas T. Belotti ◽  
Diego S. Castanho ◽  
Lilian N. Araujo ◽  
Lucas V. da Silva ◽  
Thiago Antonini Alves ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 644 ◽  
Author(s):  
Li Dong ◽  
Yuhan Sun ◽  
Keqi Zhao ◽  
Jing Zhang ◽  
Yuwei Zhang ◽  
...  

Black locust (Robinia pseudoacacia L.) is an economically and ecologically important tree species which is used for pillar construction, honey production and soil improvement. More EST-SSR (Expressed sequence tag simple sequence repeat) markers of black locust can be used as a complement and improvement of Genomic-SSR markers for the identification of the function of gene and the construction of genetic map. Additionally, currently there is no simple method for identifying black locust cultivars. In this study, we obtained 2702 unigenes from 3095 expressed sequence tags (ESTs) from the National Center of Biotechnology Information (NCBI) database to identify simple sequence repeats (SSRs) in R. pseudoacacia samples. A total of 170 SSR loci were found to be distributed in 162 non-redundant sequences with a frequency of 6.29%. Dinucleotide repeats were the most predominant types among microsatellites (62.35%), followed by tri-nucleotide repeats (25.88%); the remaining SSRs accounted for less than 12%. The repeat motifs AG/TC (29.25%) and CT/GA (29.25%) were the most abundant among dinucleotides, and AAT/TTA (15.91%) was the most common among tri-nucleotides. A total of 62 primer pairs were designed to screen polymorphic and stable SSR loci. The resulting 25 EST-SSR markers capable of amplifying polymorphic, stable, and repeatable products. Eight newly developed EST-SSR markers and four published SSR markers were selected for DNA fingerprinting and genetic diversity analysis of the 123 main R. pseudoacacia cultivars in China. The 12 SSR loci amplified 102 alleles, with an average number of alleles per locus of 8.5 (range 4–15). The average polymorphism information content at the 12 SSR loci for the 123 cultivars was 0.670 (range 0.427–0.881). The 123 cultivars clustered into six main groups based on similarity coefficients, with most cultivars in one subgroup. Fingerprinting was performed using eight SSR markers; 110 black locust cultivars were distinguished. The results of this study increase the availability of EST-SSR markers in black locust and make it a simple method for checking the collection, the certification, and the correct attribution of clones and cultivars.


2010 ◽  
Vol 42 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Zhiwu Zhang ◽  
Elhan Ersoz ◽  
Chao-Qiang Lai ◽  
Rory J Todhunter ◽  
Hemant K Tiwari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document