scholarly journals How Massive is the Black Hole in M87?

1995 ◽  
Vol 10 ◽  
pp. 535-538
Author(s):  
S.K. Chakrabarti

Using the Faint Object Spectrograph (FOS) on Hubble Space Telescope (HST), Harms et al. (1994, H94) have recently reported the spectroscopy of central region of the elliptical galaxy M87. Ford et al. 1994 (hereafter F94), using Wide Field Planetary Camera-2 have imaged the region around the nucleus in Hα+[NII] and find an ionized disk with spiral structures of mainly two arms. From the kinematical argument, based on the Doppler shifts of several lines emitted from the disk, and assuming a Keplerian motion of the emitting gas, they conclude that the mass of the disk plus the nucleus: Mc(R < 18pc) = (2.4± 0.7)× 109M⊙ and the inclination angle of the disk with the line of sight is i = (42±5)°. However, if the bright spiral structures are real, and represent shocked region in the disk, we expect that the disk is strongly non-Keplerian and therefore the mass of the black hole must be higher than above estimation.In the present contribution, we provide a complete description of the velocity field of the ionized disk and compute the shape of typical line profiles expected from various parts of the disk. Our analysis is based on the solution of a non-axisymmetric disk which includes two armed spiral density waves. We find a very good agreement between the theoretical and observed line profiles as regards to the Doppler shifts, line widths and the intensity ratios and estimate the mass of the black hole to be (4 ± 0.2) × 109M⊙. Details of this work will be published elsewhere (Chakrabarti, 1995).In a binary system with a thin accretion disk, the binary companion can induce two armed spiral shocks in the disk (e.g., Matsuda et al. 1987, Spruit 1987, Chakrabarti & Matsuda, 1992). In the case of active galaxies, a passing companion (or a globular cluster or a dwarf galaxy) which is more massive than the disk can induce the same effect.

2021 ◽  
Vol 503 (4) ◽  
pp. 5984-5996
Author(s):  
Mark D Smith ◽  
Martin Bureau ◽  
Timothy A Davis ◽  
Michele Cappellari ◽  
Lijie Liu ◽  
...  

ABSTRACT Supermassive black hole (SMBH) masses can be measured by resolving the dynamical influences of the SMBHs on tracers of the central potentials. Modern long-baseline interferometers have enabled the use of molecular gas as such a tracer. We present here Atacama Large Millimeter/submillimeter Array observations of the elliptical galaxy NGC 7052 at 0${^{\prime\prime}_{.}}$11 ($37\,$pc) resolution in the 12CO(2-1) line and $1.3\,$ mm continuum emission. This resolution is sufficient to resolve the region in which the potential is dominated by the SMBH. We forward model these observations, using a multi-Gaussian expansion of a Hubble Space Telescope F814W image and a spatially constant mass-to-light ratio to model the stellar mass distribution. We infer an SMBH mass of $2.5\pm 0.3\times 10^{9}\, \mathrm{M_\odot }$ and a stellar I-band mass-to-light ratio of $4.6\pm 0.2\, \mathrm{M_\odot /L_{\odot ,I}}$ (3σ confidence intervals). This SMBH mass is significantly larger than that derived using ionized gas kinematics, which however appears significantly more kinematically disturbed than the molecular gas. We also show that a central molecular gas deficit is likely to be the result of tidal disruption of molecular gas clouds due to the strong gradient in the central gravitational potential.


1999 ◽  
Vol 194 ◽  
pp. 389-393 ◽  
Author(s):  
Lucio M. Buson ◽  
Francesco Bertola ◽  
David Burstein ◽  
Michele Cappellari ◽  
Sperello di Serego Alighieri ◽  
...  

A self-consistent analysis of near-UV, HST/FOC images of the elliptical galaxy NGC 4552 is used to show that its central spike has brightened by a factor ˜ 4.5 between 1991 and 1993, and has decreased its luminosity by a factor ˜ 2.0 between 1993 and 1996. A strong UV continuum over the energy distribution of the underlying galaxy is concurrently revealed shortward of λ ˜ 3200 Å by our FOS spectra extending from the near-UV to red wavelengths. Nuclear emission-line profiles of both permitted and forbidden lines are best modelled with a combination of broad and narrow components, with FWHM of ˜ 3000 km s−1 and ˜ 700 km s−1, respectively. Current diagnostics based on the emission line intensity ratios definitely places the spike among AGNs, just at the border between Seyferts and LINERs. This evidence argues for the variable central spike being produced by a modest accretion event onto a central massive black hole (BH), with the accreted material having possibly being stripped from a star in a close fly-by with the BH. In this regard, one has to look at NGC 4552 as the faintest known AGN.


2002 ◽  
Vol 207 ◽  
pp. 306-308
Author(s):  
R. Buta ◽  
M. L. McCall

The Hubble Space Telescope Wide Field and Planetary Camera 2 was used to image at high resolution the core region of the nearby, heavily obscured massive elliptical galaxy Maffei 1. We report on the discovery of 19 diffuse objects in the WFPC2 field that are likely to be globular clusters associated with Maffei 1. We present some preliminary data on the luminosities, colors, and sizes of these candidates.


2020 ◽  
Vol 496 (4) ◽  
pp. 4061-4078 ◽  
Author(s):  
Timothy A Davis ◽  
Dieu D Nguyen ◽  
Anil C Seth ◽  
Jenny E Greene ◽  
Kristina Nyland ◽  
...  

ABSTRACT We estimate the mass of the intermediate-mass black hole at the heart of the dwarf elliptical galaxy NGC 404 using Atacama Large Millimetre/submillimetre Array (ALMA) observations of the molecular interstellar medium at an unprecedented linear resolution of ≈0.5 pc, in combination with existing stellar kinematic information. These ALMA observations reveal a central disc/torus of molecular gas clearly rotating around the black hole. This disc is surrounded by a morphologically and kinematically complex flocculent distribution of molecular clouds, that we resolve in detail. Continuum emission is detected from the central parts of NGC 404, likely arising from the Rayleigh–Jeans tail of emission from dust around the nucleus, and potentially from dusty massive star-forming clumps at discrete locations in the disc. Several dynamical measurements of the black hole mass in this system have been made in the past, but they do not agree. We show here that both the observed molecular gas and stellar kinematics independently require a ≈5 × 105 M⊙ black hole once we include the contribution of the molecular gas to the potential. Our best estimate comes from the high-resolution molecular gas kinematics, suggesting the black hole mass of this system is 5.5$^{+4.1}_{-3.8}\times 10^5$ M⊙ (at the 99 per cent confidence level), in good agreement with our revised stellar kinematic measurement and broadly consistent with extrapolations from the black hole mass–velocity dispersion and black hole mass–bulge mass relations. This highlights the need to accurately determine the mass and distribution of each dynamically important component around intermediate-mass black holes when attempting to estimate their masses.


2012 ◽  
Vol 8 (S295) ◽  
pp. 308-308
Author(s):  
Hyejeon Cho ◽  
John P. Blakeslee ◽  
Eric W. Peng ◽  
Young-Wook Lee

AbstractExamining both optical and optical-infrared color distributions of the globular cluster (GC) systems in large elliptical galaxies is the key to study how non-linearities in the color-metallicity relations of their GC systems are linked to bimodal optical color distributions. In order to do this for the core of the Coma cluster of galaxies (Abell 1656), centered on the giant elliptical galaxy NGC 4874, we have combined F160W (H160) near-infrared (NIR) imaging data acquired with the Wide Field Camera 3 IR Channel (WFC3/IR), installed on Hubble Space Telescope (HST) in 2009, with F475W (g475) and F814W (I814) optical imaging data from the HST Advanced Camera for Surveys (ACS). Since optical-NIR color distributions of extragalactic GC systems reflect the underlying features of the metallicity distributions, we have probed not only optical g475–I814 and optical-NIR I814–H160 color distributions but also the color-color relation for this GC system. The features of these color distributions have been quantitatively analyzed using the Gaussian Mixture Modeling code. We find that brighter GCs have a much redder mean color than fainter ones. The optical color distribution of the GC system in the Coma cluster core shows the typical bimodality, while the evidence for bimodality is significantly weaker in the optical-NIR color distribution.


2020 ◽  
Vol 495 (1) ◽  
pp. L71-L75
Author(s):  
Jun Yang ◽  
Leonid I Gurvits ◽  
Zsolt Paragi ◽  
Sándor Frey ◽  
John E Conway ◽  
...  

ABSTRACT The population of intermediate-mass black holes (IMBHs) in nearby dwarf galaxies plays an important ‘ground truth’ role in exploring black hole formation and growth in the early Universe. In the dwarf elliptical galaxy SDSS J090613.77+561015.2 (z = 0.0465), an accreting IMBH has been revealed by optical and X-ray observations. Aiming to search for possible radio core and jet associated with the IMBH, we carried out very long baseline interferometry (VLBI) observations with the European VLBI Network at 1.66 GHz. Our imaging results show that there are two 1-mJy components with a separation of about 52 mas (projected distance 47 pc) and the more compact component is located within the 1σ error circle of the optical centroid from available Gaia astrometry. Based on their positions, elongated structures and relatively high brightness temperatures, as well as the absence of star-forming activity in the host galaxy, we argue that the radio morphology originates from the jet activity powered by the central IMBH. The existence of the large-scale jet implies that violent jet activity might occur in the early epochs of black hole growth and thus help to regulate the co-evolution of black holes and galaxies.


2004 ◽  
Vol 217 ◽  
pp. 546-549 ◽  
Author(s):  
I. Saviane ◽  
J. E. Hibbard ◽  
R. M. Rich

We have used the Hubble Space Telescope and Wide Field Planetary Camera 2 to image the putative tidal dwarf galaxy located at the tip of the Southern tidal tail of NGC 4038/9, the Antennae. We resolve individual stars, and identify two stellar populations. Hundreds of massive stars are present, concentrated into tight OB associations on scales of 200 pc, with ages ranging from 2-100 Myr. An older stellar population is distributed roughly following the outer contours of the neutral hydrogen in the tidal tail; we associate these stars with material ejected from the outer disks of the two spirals. The older stellar population has a red giant branch tip at I = 26.5 ± 0.2 from which we derive a distance modulus (m - M)0 = 30.7 ± 0.25. The implied distance of 13.8 ± 1.7 Mpc is nearly a factor of two closer than commonly quoted distances for NGC 4038/9. In contrast to the previously studied core of the merger, we find no super star clusters. One might conclude that SSCs require the higher pressures found in the central regions in order to form, while spontaneous star formation in the tail produces the kind of O-B star associations seen in dwarf irregular galaxies.


2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


2019 ◽  
Vol 15 (S356) ◽  
pp. 376-376
Author(s):  
Ingyin Zaw

AbstractNuclear black holes in dwarf galaxies are important for understanding the low end of the supermassive black hole mass distribution and the black hole-host galaxy scaling relations. IC 750 is a rare system which hosts an AGN, found in ˜0.5% of dwarf galaxies, with circumnuclear 22 GHz water maser emission, found in ˜3–5% of Type 2 AGNs. Water masers, the only known tracer of warm, dense gas in the center parsec of AGNs resolvable in position and velocity, provide the most precise and accurate mass measurements of SMBHs outside the local group. We have mapped the maser emission in IC 750 and find that it traces a nearly edge-on warped disk, 0.2 pc in diameter. The central black hole has an upper limit mass of ˜1 × 105 M⊙ and a best fit mass of ˜8 × 104 M⊙, one to two orders of magnitude below what is expected from black hole-galaxy scaling relations. This has implications for models of black hole seed formation in the early universe, the growth of black holes, and their co-evolution with their host galaxies.


2019 ◽  
Vol 489 (1) ◽  
pp. L12-L16 ◽  
Author(s):  
Sugata Kaviraj ◽  
Garreth Martin ◽  
Joseph Silk

Abstract While active galactic nuclei (AGN) are considered to be key drivers of the evolution of massive galaxies, their potentially significant role in the dwarf-galaxy regime (M* &lt; 109 M⊙) remains largely unexplored. We combine optical and infrared data, from the Hyper Suprime-Cam (HSC) and the Wide-field Infrared Explorer, respectively, to explore the properties of ∼800 AGN in dwarfs at low redshift (z &lt; 0.3). Infrared-selected AGN fractions are ∼10–30 per cent in dwarfs, which, for reasonable duty cycles, indicates a high black hole (BH)-occupation fraction. Visual inspection of the deep HSC images indicates that the merger fraction in dwarf AGN (∼6 per cent) shows no excess compared to a control sample of non-AGN, suggesting that the AGN-triggering processes are secular in nature. Energetic arguments indicate that, in both dwarfs and massive galaxies, bolometric AGN luminosities (LAGN) are significantly greater than supernova luminosities (LSN). LAGN/LSN is, in fact, higher in dwarfs, with predictions from simulations suggesting that this ratio only increases with redshift. Together with the potentially high BH-occupation fraction, this suggests that if AGN feedback is an important driver of massive-galaxy evolution, the same is likely to be true in the dwarf regime, contrary to our classical thinking.


Sign in / Sign up

Export Citation Format

Share Document