scholarly journals New Ultra-Thin Pure Silicon Window Grids for Transmission Electron Microscopy Samples

2009 ◽  
Vol 17 (2) ◽  
pp. 46-47
Author(s):  
James Roussie

Traditional sample preparation supports for electron microscopy have usually been thin films of amorphous or holey carbon stretched over a metallic grid. More recently introduced formats include organic polymers over metallic grids or silicon nitride and silicon oxide membranes over silicon frames. Here, the application of a nanofabricated silicon membrane technology as a novel sample preparation support for electron microscopy is described. These new supports offer several unique characteristics, including nanoscale thickness and pores, which may improve imaging and analysis of materials and biological molecules.Recently developed technology permits the fabrication of pure silicon membranes that are among the world's thinnest materials—only 5 to 15 nm thick. See Striemer et al., Nature (2007) 445: 749-751 for more details. These silicon membranes are also among the world's first membrane technologies to offer nanoscale pores of 5 to 50 nm. This combination of characteristics is unique and not shared by the materials currently employed as sample supports. Moreover, it suggests that these silicon membranes could overcome many of the problems associated with current generation materials. For example, the holes of lacey and holey carbon grids (1-5 micron diameter) are incompatible with the size of most nanotubes and nanoparticles (2-40 nm). Obtaining background-free images of the entire nanostructure is rarely possible with this incompatible combination of sizes. Another significant issue is the inability to vigorously plasma clean samples on carbon grids. In some cases, this inability to remove organic contaminants can prevent high-resolution imaging of samples.

Author(s):  
Terrence Reilly ◽  
Al Pelillo ◽  
Barbara Miner

The use of transmission electron microscopes (TEM) has proven to be very valuable in the observation of semiconductor devices. The need for high resolution imaging becomes more important as the devices become smaller and more complex. However, the sample preparation for TEM observation of semiconductor devices have generally proven to be complex and time consuming. The use of ion milling machines usually require a certain degree of expertise and allow a very limited viewing area. Recently, the use of an ultra high resolution "immersion lens" cold cathode field emission scanning electron microscope (CFESEM) has proven to be very useful in the observation of semiconductor devices. Particularly at low accelerating voltages where compositional contrast is increased. The Hitachi S-900 has provided comparable resolution to a 300kV TEM on semiconductor cross sections. Using the CFESEM to supplement work currently being done with high voltage TEMs provides many advantages: sample preparation time is greatly reduced and the observation area has also been increased to 7mm. The larger viewing area provides the operator a much greater area to search for a particular feature of interest. More samples can be imaged on the CFESEM, leaving the TEM for analyses requiring diffraction work and/or detecting the nature of the crystallinity.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


1992 ◽  
Vol 281 ◽  
Author(s):  
S. Shih ◽  
K. H. Jung ◽  
D. L. Kwong

ABSTRACTWe have developed a new, minimal damage approach for examination of luminescent porous Si layers (PSLs) by transmission electron microscopy (TEM). In this approach, chemically etched PSLs are fabricated after conventional plan-view TEM sample preparation. A diffraction pattern consisting of a diffuse center spot, characteristic of amorphous material, is primarily observed. However, crystalline, microcrystalline, and amorphous regions could all be observed in selected areas. A crystalline mesh structure could be observed in some of the thin areas near the pinhole. The microcrystallite sizes were 15–150 Å and decreased in size when located further from the pinhole.


2012 ◽  
Vol 20 (1) ◽  
pp. 18-22
Author(s):  
Haimei Zheng

Over the last decade, transmission electron microscopy (TEM) has advanced remarkably. With the development of aberration-corrected optics, improved recording systems, high brightness guns, and so on, imaging with single-atom sensitivity across the periodic table has become a reality. Atomic resolution imaging with rapid acquisition and with greater signal collection efficiency opens many opportunities in the study of dynamic processes of materials.


Sign in / Sign up

Export Citation Format

Share Document