scholarly journals Online Microscopy Lab Training Modules in an Academic Environment

2008 ◽  
Vol 16 (5) ◽  
pp. 44-47
Author(s):  
K. Schierbeek ◽  
A. Mikel ◽  
S. E. Hill ◽  
O. P. Mills

The Applied Chemical and Morphological Analysis Laboratory (ACMAL) is a multi-user, multi-disciplinary characterization laboratory. ACMAL houses two scanning electron microscopes (SEM and FE-SEM), a transmission electron microscope (TEM), focused ion beam milling system (FIB), four X-ray diffractometers, and an X-ray fluorescence spectrometer. ACMAL operates as a recharge center where users absorb facility operation cost through an hourly use fee. As such, we are keenly interested in encouraging broad access to the facility by lowering obstacles to users. Facility training enhancements provide the best pathway to productive and responsible facility usage.

Author(s):  
R.J. Young ◽  
A. Buxbaum ◽  
B. Peterson ◽  
R. Schampers

Abstract Scanning transmission electron microscopy with scanning electron microscopes (SEM-STEM) has become increasing used in both SEM and dual-beam focused ion beam (FIB)-SEM systems. This paper describes modeling undertaken to simulate the contrast seen in such images. Such modeling provides the ability to help understand and optimize imaging conditions and also support improved sample preparation techniques.


Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


2006 ◽  
Vol 15-17 ◽  
pp. 159-163 ◽  
Author(s):  
Kee Hyun Kim ◽  
Benny van Daele ◽  
Gustaaf Van Tendeloo ◽  
Yong Sug Chung ◽  
Jong Kyu Yoon

A hot dip aluminising process was carried out with a 1mm steel sheet dipped into the Al-10at.% Si melt in an automatic hot-dip simulator. When steel and liquid aluminium are in contact with each other, a thin intermetallic compound (IMC) is formed between the steel and the aluminium. The analysis and identification of the formation mechanism of the IMC is needed to manufacture the application products. Energy dispersive X-ray spectroscopy (EDX) and electron probe microanalysis (EPMA) are normally used to identify the phases of IMC. In the Al-Fe-Si system, numerous compounds with only slight differences in composition are formed. Consequently, EDX and EPMA are insufficient to confirm exactly the thin IMC with multiphases. In this study, transmission electron microscopy (TEM) analysis combined with EDX was used. The TEM sample was prepared with focused ion beam (FIB) sampling. The FIB lift-out technology is used to slice a very thin specimen with minimum contamination for TEM analysis. It is clearly shown that the IMC consists of Al-27 at. % Fe-10 at. % Si and is identified as Al8Fe2Si with a hexagonal unit cell (space group P63/mmc). The cell parameters are a= 1.2404nm and c= 2.6234nm.


1998 ◽  
Vol 4 (S2) ◽  
pp. 856-857
Author(s):  
David M. Longo ◽  
James M. Howe ◽  
William C. Johnson

The focused ion beam (FIB) has become an indispensable tool for a variety of applications in materials science, including that of specimen preparation for the transmission electron microscope (TEM). Several FIB specimen preparation techniques have been developed, but some problems result when FIB specimens are analyzed in the TEM. One of these is X-ray fluorescence from bulk material surrounding the thin membrane in FIB-prepared samples. This paper reports on a new FIB specimen preparation method which was devised for the reduction of X-ray fluorescence during energy dispersive X-ray spectroscopy (EDS) in the TEM.Figure 1 shows three membrane geometries that were investigated in this study on a single-crystal Si substrate with a RF sputter-deposited 50 nm Ni film. Membrane 1 is the most commonly reported geometry in the literature, with an approximately 20 urn wide trench and a membrane having a single wedge with a 1.5° incline.


2007 ◽  
Vol 15 (6) ◽  
pp. 38-39
Author(s):  
D. J. MacMahon ◽  
E. Raz-Moyal

Semiconductor manufacturers are increasingly turning to Transmission Electron Microscopes (TEMs) to monitor product yield and process control, analyze defects, and investigate interface layer morphology. To prepare TEM specimens, Focused Ion Beam (FIB) technology is an invaluable tool, yielding a standard milled TEM lamella approximately 15 μm wide, 5 μm deep and ~100 nm thick. Several techniques have been developed to extract these tiny objects from a large wafer and view it in the TEM. These techniques, including ex-situ lift-out, H-bar, and in-situ lift-out, have different advantages and disadvantages, but all require painstaking preparation of one specimen at a time.


2000 ◽  
Vol 6 (3) ◽  
pp. 218-223
Author(s):  
Toshie Yaguchi ◽  
Takeo Kamino ◽  
Mitsumasa Sasaki ◽  
Gerard Barbezat ◽  
Ryoichi Urao

Abstract A focused ion beam (FIB) technique was applied to cross-sectional specimen preparation to observe an interface between a plasma sprayed coating and an aluminum (Al) substrate by transmission electron microscopy (TEM). The surface of the sprayed coating film has a roughness of several tens of microns. Sputter rates for the coating film and the substrate are greatly different. The rough surface and the difference in sputter rate cause problems in making TEM specimens with smooth side walls. The top surface of the coating film was planerized by the FIB before fabricating the TEM specimen. The interfaces were investigated by TEM and energy-dispersive X-ray (EDX) analysis. The TEM observation revealed that there is a 10 nm thick amorphous layer at the interface between the coating film and substrate. The coating film consists of two kinds of sublayers with bright and dark contrast. The bright contrast sublayers were amorphous layers with thickness of 2~10 nm. The Al/Fe X-ray intensity ratio was larger in bright contrast sublayers than that in dark contrast sublayers.


1995 ◽  
Vol 396 ◽  
Author(s):  
A. Wagner ◽  
P. Blauner ◽  
P. Longo ◽  
S. Cohen

AbstractFocused Ion Beams offer a new method of measuring the size of polymer resist features on integrated circuits. The short penetration range of an ion relative to an electron is shown to offer fundamental advantages for critical dimension (CD) metrology. By confining the polymer damage to the very near surface, ion beams can induce less dimensional change than scanning electron microscopes during the measurement process. This can result in improved CD measurement precision. The erosion rate of polymers to various ion species is also presented, and we show that erosion is non-linear with ion dose. The use of FIB for forming resist cross sections is also demonstrated. An H20 gas assisted etching process for polymers has been developed, and is shown to significantly improve the quality of resist cross sections.


2010 ◽  
Vol 16 (2) ◽  
pp. 210-217 ◽  
Author(s):  
Xiaoxing Ke ◽  
Sara Bals ◽  
Daire Cott ◽  
Thomas Hantschel ◽  
Hugo Bender ◽  
...  

AbstractThe three-dimensional (3D) distribution of carbon nanotubes (CNTs) grown inside semiconductor contact holes is studied by electron tomography. The use of a specialized tomography holder results in an angular tilt range of ±90°, which means that the so-called “missing wedge” is absent. The transmission electron microscopy (TEM) sample for this purpose consists of a micropillar that is prepared by a dedicated procedure using the focused ion beam (FIB) but keeping the CNTs intact. The 3D results are combined with energy dispersive X-ray spectroscopy (EDS) to study the relation between the CNTs and the catalyst particles used during their growth. The reconstruction, based on the full range of tilt angles, is compared with a reconstruction where a missing wedge is present. This clearly illustates that the missing wedge will lead to an unreliable interpretation and will limit quantitative studies.


1999 ◽  
Vol 5 (5) ◽  
pp. 365-370 ◽  
Author(s):  
Toshie Yaguchi ◽  
Takeo Kamino ◽  
Tohru Ishitani ◽  
Ryoichi Urao

A new method for transmission electron microscope (TEM) specimen preparation using a focused ion beam (FIB) system that results in a lower rate of gallium (Ga) implantation has been developed. The method was applied to structural and analytical studies of composite materials such as silicon (Si)-devices and magneto-optical disk. To protect the specimens against Ga ion irradiation, amorphous tungsten (W) was deposited on the surface of the specimen prior to FIB milling. The deposition was quite effective in reducing the Ga implantation rate, and energy-dispersive X-ray (EDX) analysis of these specimens detected 0.3Ð1.5% Ga incorporated in the thinned area. FIB milling times for these specimens were 1.5Ð2 hr. Although the milling rate was high, all the materials were properly prepared for TEM study, and clear crystal lattice images were observed on all specimens.


Sign in / Sign up

Export Citation Format

Share Document