Analysis of Surface Acoustic Waves in Layered Piezoelectric Media and its Applications to the Design of Saw Devices

2003 ◽  
Vol 19 (1) ◽  
pp. 225-232 ◽  
Author(s):  
T.-T. Wu ◽  
Y.-Y. Chen

ABSTRACTIn this paper, we utilized a Stroh based formulation for solving problems of surface waves in layered piezoelectric media, and then, applied it to analyze surface acoustic wave (SAW) devices. The determination of the optimal cut of a piezoelectric crystal and the choice of the best propagation of SAW devices were given. The dispersion induced by a thin metal layer on SAW propagation in a SAW device was analyzed and discussed. Finally, we applied the formulation to calculate the effective permittivity and phase velocity dispersion of a LiNbO3/Diamond layered SAW device. Both of the null frequency bandwidth and the insertion loss of the dispersive SAW device were obtained.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Tarasenko ◽  
Radim Čtvrtlík ◽  
Radim Kudělka

AbstractThe phase velocity dispersion of the surface acoustic waves on a basal plane of Si(100) has been calculated in the whole range of the azimuthal angle of propagation. We present a detailed description of the calculations. These calculations are compared with the experimental data obtained by a laser acoustic method. Our data convincingly demonstrate the existence of a gap in the spectrum of the phase velocities. The gap means that in a definite range of the phase velocities the SAWs are absent in the whole interval of the azimuthal angles. There is an excellent coincidence between the numerical and experimental data.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Guigen Zhang

Surface acoustic wave (SAW) devices are considered to be very promising in providing a high-performance sensing platform with wireless and remote operational capabilities. In this review, the basic principles of SAW devices and Love-mode SAW-based biosensors are discussed first to illustrate the need for surface enhancement for the active area of a SAW sensor. Then some of the recent efforts made to incorporate nanostructures into SAW sensors are summarized. After that, a computational approach to elucidate the underlying mechanism for the operations of a Love-mode SAW biosensor with nanostructured active surface is discussed. Finally, a modeling example for a Love-mode SAW sensor with skyscraper nanopillars added to in its active surface along with some selected results is presented.


2012 ◽  
Vol 132 (2) ◽  
pp. 738-745 ◽  
Author(s):  
Wenqi Li ◽  
Steve D. Sharples ◽  
Richard J. Smith ◽  
Matt Clark ◽  
Michael G. Somekh

Sign in / Sign up

Export Citation Format

Share Document