scholarly journals Nitrogen fertility in semiarid dryland wheat production is challenging for beginning organic farmers

2012 ◽  
Vol 29 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Drew J. Lyon ◽  
Gary W. Hergert

AbstractOrganic farming systems use green and animal manures to supply nitrogen (N) to their fields for crop production. The objective of this study was to evaluate the effect of green manure and composted cattle manure on the subsequent winter wheat (Triticum aestivumL.) crop in a semiarid environment. Dry pea (Pisum sativumL.) was seeded in early April and terminated at first flower in late June. Composted cattle manure was applied at 0, 11.2 or 22.5 Mg ha−1just prior to pea termination. Winter wheat was planted in mid September following the green manure or tilled summer fallow. No positive wheat response to green manure or composted cattle manure was observed in any of the 3 years of the study. In 2 of the 3 years, wheat yields and grain test weight were reduced following green manure. Green manure reduced grain yields compared with summer fallow by 220 and 1190 kg ha−1in 2009 and 2010, respectively. This may partially be explained by 40 and 47 mm less soil water at wheat planting following peas compared with tilled summer fallow in 2008 and 2009, respectively. Also, in 2008 and 2009, soil nitrate level averaged 45 kg ha−1higher for black fallow compared with green manure fallow when no compost was added. Organic growers in the semiarid Central Great Plains will be challenged to supply N fertility to their winter wheat crop in a rapid and consistent manner as a result of the inherently variable precipitation. Growers may need to allow several years to pass before seeing the benefits of fertility practices in their winter wheat cropping systems.

1996 ◽  
Vol 76 (3) ◽  
pp. 401-406 ◽  
Author(s):  
C. A. Campbell ◽  
F. Selles ◽  
J. T. Harapiak ◽  
G. P. Lafond

An earlier analysis of yield trends of stubble-wheat in six cropping systems, over 35 yr, in a thin Black Chernozemic soil at Indian Head, Saskatchewan, showed that fertilizer improved soil quality, while absence of fertilizer, combined with frequent fallowing, led to soil degradation. The inclusion of a legume green manure crop in the rotation failed to maintain soil fertility, apparently because legumes do not supply P. Because the fertility and stored moisture effects were confounded, we conducted a growth chamber experiment to quantify soil responses to N and P in these six cropping systems. Soil from the top 15-cm of the rotation phase that had just grown two successive wheat (Triticum aestivum L.) crops was used. Various factorial combinations of ammonium nitrate-N and triple superphosphate-P were applied at N/P2O5 rates up to 200/200 kg ha−1. Soil moisture was maintained in the available range. Regression analysis showed that the fallow-wheat-wheat (F-W-W) and continuous wheat (Cont W) systems that had not been fertilized in 35 yr, and which had moderate amounts of NaHCO3-P, only responded to N. In contrast, the green manure (GM)- and hay (H)- containing systems, which had also not been fertilized before had low levels of NaHCO3-P and responded to both N and P. In the field, the yields of wheat grown on stubble in 1991 rated: Cont W (N + P) > F-W-W (N + P) > F-W-W-H-H-H > Cont W > GM-W-W > F-W-W. However, in the growth chamber the rating was: Cont W (N + P) > F-W-W-H-H-H > GM-W-W > Cont W > F-W-W (N + P) > F-W-W. We suggest that the growth chamber results more accurately reflect the present fertility status of these soils, because fertility is no longer confounded with soil moisture. Grain yields in the growth chamber were directly proportional to the previously measured initial potential rate of N mineralization, indicating the value of the latter parameter as a useful index of soil N fertility. Key words: Nitrogen, phosphorus, soil degradation, legumes, fertilizers


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1777
Author(s):  
William F. Schillinger ◽  
David W. Archer

Triticale (X Triticosecale Wittmack) is a cereal feed grain grown annually worldwide on 4.2 million ha. Washington is the leading state for rainfed (i.e., non-irrigated) triticale production in the USA. A 9-year dryland cropping systems project was conducted from 2011 to 2019 near Ritzville, WA to compare winter triticale (WT) with winter wheat (Triticum aestivum L.) (WW) grown in (i) a 3-year rotation of WT-spring wheat (SW) -no-till summer fallow (NTF) (ii) a 3-year rotation of WW-SW-undercutter tillage summer fallow (UTF) and (iii) a 2-year WW-UTF rotation, We measured grain yield, grain yield components, straw production, soil water dynamics, and effect on the subsequent SW wheat crop (in the two 3-year rotations). Enterprise budgets were constructed to evaluate the production costs and profitability. Grain yields averaged over the years were 5816, 5087, and 4689 kg/ha for WT, 3-year WW, and 2-year WW, respectively (p < 0.001). Winter triticale used slightly less water than WW (p = 0.019). Contrary to numerous reports in the literature, WT never produced more straw dry biomass than WW. Winter wheat produced many more stems than WT (p < 0.001), but this was compensated by individual stem weight of WT being 60% heavier than that of WW (p < 0.001). Spring wheat yield averaged 2451 vs. 2322 kg/ha after WT and WW, respectively (p = 0.022). The market price for triticale grain was always lower than that for wheat. Winter triticale produced an average of 14 and 24% more grain than 3-year and 2-year WW, respectively, provided foliar fungal disease control, risk reduction, and other rotation benefits, but was not economically competitive with WW. A 15–21% increase in WT price or grain yield would be necessary for the WT rotation to be as profitable as the 3-year and 2-year WW rotations, respectively.


2007 ◽  
Vol 99 (4) ◽  
pp. 904-911 ◽  
Author(s):  
D. L. Tanaka ◽  
J. M. Krupinsky ◽  
S. D. Merrill ◽  
M. A. Liebig ◽  
J. D. Hanson

2020 ◽  
Vol 36 (1) ◽  
pp. 1-9
Author(s):  
Alan J Schlegel ◽  
Yared Assefa ◽  
Daniel O’Brien

Abstract. Selection of optimal crops and cropping systems for most efficient water use specific for local environments can improve global water security. Limited irrigation with ground water is one alternative to alleviate crops from low amount or unevenly distributed water in the growing seasons in semi-arid regions. The main objectives of this research were to quantify yield-water use relationships of three limited irrigated crops, determine effect of crop selection on profitability with limited irrigation, and identify profitable and alternative crop production systems. A field study was conducted at the Kansas State University Southwest Research-Extension Center near Tribune, Kansas, from 2012 through 2017. There were four treatments in the study, two 1-yr systems of continuous corn ( L.) (C-C) and continuous grain sorghum (L.) (GS-GS) and two 2-yr rotations of corn-grain sorghum (C-GS) and corn-winter wheat ( L.) (C-W). Overall corn yield after wheat (C-W) was about 1.4 Mg (ha)-1 greater than C-C. Corn and sorghum yields were similar grown as monoculture or in rotation with each other. Available soil water at corn planting and during the growing season were 20 to 40 mm (240 cm profile-1) less in the C-GS rotation compared with C-C and C-W rotations. Corn yield increased as water use (yield-water use) increased in C-W rotation but yield-water use relationships tended to be negative in C-C and C-GS rotations. Grain sorghum yield increased with water use in both rotations but at a greater rate in GS-GS compared with C-GS. Despite greater corn grain yield in C-W, our economic analysis showed that wheat was the least profitable of the three crops causing the C-W rotation to be least profitable. In this study, the most profitable limited irrigation crop rotation was corn-grain sorghum (C-GS). Keywords: Corn-sorghum-wheat, Crop rotation, Limited irrigation, Profitability, Supplementary irrigation, Sustainability.


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 58 ◽  
Author(s):  
P. Jiao ◽  
D. Xu ◽  
S. Wang ◽  
Y. Wang ◽  
K. Liu ◽  
...  

Reducing nitrogen (N) loss from agricultural soils as surface runoff is essential to prevent surface water contamination. The objective of 3-year study, 2007–09, was to evaluate surface runoff and N loss from different cropping systems. There were four treatments, including one single-crop cropping system with winter wheat (Triticum aestivum L.) followed by summer fallow (wheat/fallow), and three double-cropping systems: winter wheat/corn (Zea mays L.), wheat/cotton (Gossypium hirsutum L.), and wheat/soybean (Glycine max L. Merrill). The wheat/fallow received no fertiliser in the summer fallow period. The four cropping systems were randomly assigned to 12 plots of 5 m by 2 m on a silty clay soil. Lower runoff was found in the three double-cropping systems than the wheat/fallow, with the lowest runoff from the wheat/soybean. The three double-cropping systems also substantially reduced losses of ammonium-N (NH4+-N), nitrate-N (NO3–-N), dissolved N (DN), and total N (TN) compared with the wheat/fallow. Among the three double-cropping systems, the highest losses of NO3–-N, DN, and TN were from the wheat/cotton, and the lowest losses were from the wheat/soybean. However, the wheat/soybean increased NO3–-N and DN concentrations compared with wheat/fallow. The losses in peak events accounted for >64% for NH4+-N, 58% for NO3–-N, and 41% for DN of the total losses occurring during the 3-year experimental period, suggesting that peak N-loss events should be focussed on for the control of N loss as surface runoff from agricultural fields.


Weed Science ◽  
1992 ◽  
Vol 40 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Stephen A. Valenti ◽  
Gail A. Wicks

Experiments were conducted to determine the influence of nitrogen (N) fertility and winter wheat cultivars on weed infestations in a winter wheat-ecofallow sorghum-fallow rotation near North Platte, NE. Centurk 78 and Lancota winter wheat suppressed density and growth of barnyardgrass and green foxtail significantly more than Eagle winter wheat before and after wheat harvest. Increasing N rates applied to winter wheat decreased annual grass weed population and weed yields. However, 67 and 101 kg N ha−1reduced winter wheat grain yields compared to 34 kg N ha−1. Plots treated at 2.8 plus 0.3 kg ai ha−1of atrazine plus paraquat 31 d after wheat harvest had more barnyardgrass before grain sorghum planting in 1983 than plots treated 17 d after wheat harvest but the reverse was true for green foxtail after grain sorghum emergence in 1984. Increasing N rates from 34 kg ha−1to 67 and 101 kg ha−1in the previous wheat crop decreased weed density before and after grain sorghum planting. There was no advantage in weed control in the grain sorghum from applying N to winter wheat in the fall vs. spring.


2007 ◽  
Vol 99 (4) ◽  
pp. 904-911 ◽  
Author(s):  
D. L. Tanaka ◽  
J. M. Krupinsky ◽  
S. D. Merrill ◽  
M. A. Liebig ◽  
J. D. Hanson

2000 ◽  
Vol 80 (2) ◽  
pp. 441-449 ◽  
Author(s):  
J. R. Moyer ◽  
R. E. Blackshaw ◽  
E. G. Smith ◽  
S. M. McGinn

Cropping systems in western Canada that include summer fallow can leave the soil exposed to erosion and require frequent weed control treatments. Cover crops have been used for soil conservation and to suppress weed growth. Experiments were conducted under rain-fed conditions at Lethbridge, Alberta to determine the effect of short-term fall rye (Secale cereale L.), winter wheat (Triticum aestivum L.) and annual rye cover crops in the fallow year on weed growth and subsequent wheat yield. Under favorable weather conditions fall rye was as effective as post-harvest plus early spring tillage or herbicides in spring weed control. Winter wheat and fall rye residues, after growth was terminated in June, reduced weed biomass in September by 50% compared to no cover crop in 1993 but had little effect on weeds in 1995. Fall-seeded cover crops reduced the density of dandelion (Taraxacum officinale Weber in Wiggers) and Canada thistle [Cirsium arvense (L.) Scop.] but increased the density of downy brome (Bromus tectorum L.), wild buckwheat (Polygonum convolvulus L.), and thyme-leaved spurge (Euphorbia serpyllifolia Pers.) in the following fall or spring. Wheat yields after fall rye and no cover crop were similar but yields after spring-seeded annual rye were less than after no cover crop. Spring-seeded annual rye did not adequately compete with weeds. Cover crops, unlike the no cover crop treatment, always left sufficient plant residue to protect the soil from erosion until the following wheat crop was seeded. Key words: Allelopathies, fall rye, nitrogen, soil conservation, soil moisture, weed control, spring rye, winter wheat


2006 ◽  
Vol 20 (2) ◽  
pp. 445-452 ◽  
Author(s):  
Jon C. Stone ◽  
Thomas F. Peeper ◽  
Amanda E. Stone

In the Southern Great Plains, producers of hard red winter wheat seek sustainable methods for controlling cheat and improving economic returns. Experiments were conducted at two sites in north-central Oklahoma to determine the effect of cheat management programs, with various weed control strategies, on cheat densities and total net returns. The cheat management programs, initiated following harvest of winter wheat, included conventionally tilled, double-crop grain sorghum (Sorghum bicolorL.) followed by soybean (Glycine maxL.); and continuous winter wheat. Rotating out of winter wheat for one growing season increased yield of succedent wheat up to 32% and 42% at Billings and Ponca City, respectively. Dockage due to cheat in the succedent wheat was reduced up to 78% and 87% by rotating out of winter wheat for one growing season at Billings and Ponca City, respectively. Cheat management programs including a crop rotation with herbicides applied to the grain sorghum, except for an application of atrazine + metolachlor at Ponca City, improved total net returns over the nontreated continuous wheat option. Cheat panicles in the succedent wheat were reduced up to 87% by rotation out of winter wheat for one growing season.


2015 ◽  
Vol 95 (6) ◽  
pp. 1049-1072 ◽  
Author(s):  
Joanne R. Thiessen Martens ◽  
Martin H. Entz ◽  
Mark D. Wonneck

Thiessen Martens, J. R., Entz, M. H. and Wonneck, M. D. 2015. Review: Redesigning Canadian prairie cropping systems for profitability, sustainability, and resilience. Can. J. Plant Sci. 95: 1049–1072. Redesign of agricultural systems according to ecological principles has been proposed for the development of sustainable systems. We review a wide variety of ecologically based crop production practices, including crop varieties and genetic diversity, crop selection and rotation, cover crops, annual polyculture, perennial forages, perennial grains, agroforestry systems, reducing tillage, use of animal manures and green manures, soil biological fertility, organic production systems, integrated crop–livestock systems, and purposeful design of farm landscapes (farmscaping), and discuss their potential role in enhancing the profitability, environmental sustainability, and resilience of Canadian prairie cropping systems. Farming systems that most closely mimic natural systems through appropriate integration of diverse components, within a context of supportive social and economic structures, appear to offer the greatest potential benefits, while creating a framework in which to place all other farming practices. Our understanding of ecological relationships within agricultural systems is currently lacking, and a major shift in research, education, and policy will be required to purposefully and proactively redesign Canadian prairie agricultural systems for long-term sustainability.


Sign in / Sign up

Export Citation Format

Share Document