Review: Redesigning Canadian prairie cropping systems for profitability, sustainability, and resilience

2015 ◽  
Vol 95 (6) ◽  
pp. 1049-1072 ◽  
Author(s):  
Joanne R. Thiessen Martens ◽  
Martin H. Entz ◽  
Mark D. Wonneck

Thiessen Martens, J. R., Entz, M. H. and Wonneck, M. D. 2015. Review: Redesigning Canadian prairie cropping systems for profitability, sustainability, and resilience. Can. J. Plant Sci. 95: 1049–1072. Redesign of agricultural systems according to ecological principles has been proposed for the development of sustainable systems. We review a wide variety of ecologically based crop production practices, including crop varieties and genetic diversity, crop selection and rotation, cover crops, annual polyculture, perennial forages, perennial grains, agroforestry systems, reducing tillage, use of animal manures and green manures, soil biological fertility, organic production systems, integrated crop–livestock systems, and purposeful design of farm landscapes (farmscaping), and discuss their potential role in enhancing the profitability, environmental sustainability, and resilience of Canadian prairie cropping systems. Farming systems that most closely mimic natural systems through appropriate integration of diverse components, within a context of supportive social and economic structures, appear to offer the greatest potential benefits, while creating a framework in which to place all other farming practices. Our understanding of ecological relationships within agricultural systems is currently lacking, and a major shift in research, education, and policy will be required to purposefully and proactively redesign Canadian prairie agricultural systems for long-term sustainability.

2019 ◽  
Vol 35 (5) ◽  
pp. 513-521
Author(s):  
Sonja B. Brodt ◽  
Nina M. Fontana ◽  
Leigh F. Archer

AbstractIntensive use of external inputs in specialized industrial farming systems has created significant socio-ecological externalities, including water and air pollution from nutrients and pesticides, soil erosion and depletion of carbon stocks, biodiversity loss and rising production costs. Ecological intensification is a strategy for reducing reliance on inputs by intentionally designing agroecosystems to harness biological processes and ecological relationships for the sustainable functioning of the system. Incorporating perennials and diversifying systems are two avenues for achieving ecological intensification, and both are characteristics of agroforestry. This preliminary report uses examples of agroforestry in the US state of California as a proof of concept to explore the agronomic and economic feasibility and sustainability benefits of agroforestry in intensive irrigated and temperate farming systems. An exploratory study of farmers experimenting with agroforestry systems and other agricultural professionals identified eight different variants of agroforestry systems being practiced on prime agricultural land in California, ranging from simple use of winter cover crops in orchards to multi-storied cropping systems with integrated grazing. Respondents noted benefits of reduced inputs and production costs, and better nutrient cycling, soil health and pest control. Trade-offs and challenges included increases in labor requirements and management complexity. Knowledge gaps included lack of guidance in biophysical systems design, lack of clarity about economic tradeoffs, and lack of information about ecosystem services benefits. In light of interviewees’ responses, we discuss the constraints and factors needed to foster the successful expansion of agroforestry systems in California and other regions characterized by industrialized farming.


2012 ◽  
Vol 29 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Drew J. Lyon ◽  
Gary W. Hergert

AbstractOrganic farming systems use green and animal manures to supply nitrogen (N) to their fields for crop production. The objective of this study was to evaluate the effect of green manure and composted cattle manure on the subsequent winter wheat (Triticum aestivumL.) crop in a semiarid environment. Dry pea (Pisum sativumL.) was seeded in early April and terminated at first flower in late June. Composted cattle manure was applied at 0, 11.2 or 22.5 Mg ha−1just prior to pea termination. Winter wheat was planted in mid September following the green manure or tilled summer fallow. No positive wheat response to green manure or composted cattle manure was observed in any of the 3 years of the study. In 2 of the 3 years, wheat yields and grain test weight were reduced following green manure. Green manure reduced grain yields compared with summer fallow by 220 and 1190 kg ha−1in 2009 and 2010, respectively. This may partially be explained by 40 and 47 mm less soil water at wheat planting following peas compared with tilled summer fallow in 2008 and 2009, respectively. Also, in 2008 and 2009, soil nitrate level averaged 45 kg ha−1higher for black fallow compared with green manure fallow when no compost was added. Organic growers in the semiarid Central Great Plains will be challenged to supply N fertility to their winter wheat crop in a rapid and consistent manner as a result of the inherently variable precipitation. Growers may need to allow several years to pass before seeing the benefits of fertility practices in their winter wheat cropping systems.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-1
Author(s):  
Maria Pergola ◽  
◽  
Assunta Maria Palese ◽  
Alessandro Persiani ◽  
Pasquale De Francesco ◽  
...  

The COVID-19 pandemic has drastically changed the lives of people, as well as the production and economic systems throughout the world. The flow of raw materials and products, the supply of labor and manpower, and the purchasing power have all been changed to the detriment of individual health and well-being. Such a situation requires placing even more emphasis on the search for virtuous agricultural systems compatible with the goals of economic and environmental development so clearly defined at the world level in the last decades. The present study aimed to assess the environmental and economic performance of some typical Mediterranean crops grown under different agronomical management regimes, such as strawberry, hazelnut, apricot tree, kiwifruit, peach, olive tree, and grapevine, to emphasize the importance of the mentioned issues even in the current pandemic situation. Life cycle assessment (LCA) was used to investigate the environmental profile of the studied crops, while lifecycle costing (LCC) was performed to assess and compare the economic aspects. From the environmental perspective, the hobby-organic olive systems were the most eco-friendly cropping systems, emitting 0.031 to 0.105 kg CO2eq per kg olives, while the organic hazelnut system had the greatest impact (1.001 kg of CO2eq per kg). Apricot, kiwifruit, and peach systems used N and P inputs most effectively, while strawberry systems efficiently used fossil fuels. Olive HO-2, kiwifruit, and peach cropping systems had the lowest budgets, with the costs amounted to 0.12 € kg-1 per fruit for Olive HO-2 and 0.28 € kg-1 per fruit for both kiwifruit and peach. On the contrary, organic strawberry cultivation was the most expensive (4.77 € kg-1). The variability in results due to the large differences between contexts, such as landscape, technical knowledge, and crop management, characterized the studied agricultural systems. To easily identify sustainability classes and to diminish the impact of farming practices, a considerable effort should be expended to combine LCA with LCC, C sequestration estimates, and some other useful indicators for the environmental quality evaluation.


2020 ◽  
Vol 8 (3) ◽  
pp. 328 ◽  
Author(s):  
Antonio Castellano-Hinojosa ◽  
Sarah L. Strauss

Increased concerns associated with interactions between herbicides, inorganic fertilizers, soil nutrient availability, and plant phytotoxicity in perennial tree crop production systems have renewed interest in the use of cover crops in the inter-row middles or between trees as an alternative sustainable management strategy for these systems. Although interactions between the soil microbiome and cover crops have been examined for annual cropping systems, there are critical differences in management and growth in perennial cropping systems that can influence the soil microbiome and, therefore, the response to cover crops. Here, we discuss the importance of cover crops in tree cropping systems using multispecies cover crop mixtures and minimum tillage and no-tillage to not only enhance the soil microbiome but also carbon, nitrogen, and phosphorus cycling compared to monocropping, conventional tillage, and inorganic fertilization. We also identify potentially important taxa and research gaps that need to be addressed to facilitate assessments of the relationships between cover crops, soil microbes, and the health of tree crops. Additional evaluations of the interactions between the soil microbiome, cover crops, nutrient cycling, and tree performance will allow for more effective and sustainable management of perennial cropping systems.


2019 ◽  
Vol 35 (6) ◽  
pp. 663-677 ◽  
Author(s):  
Andrés Horrillo ◽  
Paula Gaspar ◽  
Francisco J. Mesías ◽  
Ahmed Elghannam ◽  
Miguel Escribano

AbstractThe dehesa agroforestry system is classified as one of the most singular ecosystems in the European Union. In the southwest of the Iberian Peninsula, it spreads over an area of approximately 6.7 million hectares, contributing major environmental, cultural, aesthetic and economic value to the region. The main agricultural activity that is developed in this ecosystem is the extensive farming of cattle, sheep and Iberian pigs with low stocking density and few inputs. Sustainable management of these ecosystems' existing production farms is essential in order to secure their continuity, as they face a difficult situation on account of their low profitability. One of the strategies that could be employed to attain a sustainable situation is the proposition of an organic production model. In order to explore this option, a participatory research process has been proposed and developed in the Spanish region called Extremadura (Spain). The aim of this process is to investigate the potential of extensive farming systems in moving toward a sustainable organic production model, identifying the main barriers preventing livestock farmers from converting to the organic model and seeking specific improvement measures that would reduce such barriers. For that purpose, four focus group sessions were run with a total of 33 participating stakeholders. For the analysis of these focus groups, Atlas.ti qualitative software was used to categorize and quantify the main ideas proposed during the sessions. The findings revealed that the main barriers can be classified into three groups: barriers that are inherent to the production processes and the structure of the specific sector, barriers associated with administration and management issues and lastly, barriers relating to education and training of the various actors involved. We consider this paper may contribute to policy makers' decisions to focus on specific actions for improvement that are customized for the socio-economic and environmental conditions of the region.


2005 ◽  
Vol 85 (1) ◽  
pp. 31-40 ◽  
Author(s):  
C. Plenchette ◽  
C. Clermont-Dauphin ◽  
J. M. Meynard ◽  
J. A. Fortin

Market globalization, demographic pressure, and environmental degradation have led us to reconsider many of our current agricultural systems. The heavy use of chemical inputs, including fertilizers and pesticides, has resulted in pollution, decreased biodiversity in intensively-farmed regions, degradation of fragile agro-ecosystems, and prohibitive costs for many farmers. Low input sustainable cropping systems should replace conventional agriculture, but this requires a more comprehensive understanding of the biological interactions within agro-ecosystems. Mycorrhizal fungi appear to be the most important telluric organisms to consider. Mycorrhizae, which result from a symbiosis between these fungi and plant roots, are directly involved in plant mineral nutrition, the control of plant pathogens, and drought tolerance. Most horticultural and crop plants are symbiotic with arbuscular mycorrhizal fungi. Mycorrhizal literature is abundant, showing that stimulation of plant growth can be mainly attributed to improved phosphorous nutrition. Although the mycorrhizal potential of its symbiosis to improve crop production is widely recognized, it is not implemented in agricultural systems. There is an urgent need to improve and widely apply analytical methods to evaluate characteristics such as, relative field mycorrhizal dependency, soil mycorrhizal infectivity, and mycorrhizal receptivity of soil. Decreased use of fertilizers, pesticides, and tillage will favour arbuscular mycorrhizal fungi. However, shifting from one system to a more sustainable one is not easy since all components of the cropping system are closely linked. Different cases, from actual agricultural practices in different countries, are analyzed to highlight situations in which mycorrhizae might or might not play a role in developing more sustainable agriculture. Key words: Cropping systems, mycorrhizae, sustainability, technical itineraries, rotation


2010 ◽  
Vol 26 (1) ◽  
pp. 72-91 ◽  
Author(s):  
Lindsay W. Bell ◽  
Richard G. Bennett ◽  
Megan H. Ryan ◽  
Heather Clarke

AbstractMany agricultural systems around the world are challenged by declining soil resources, a dry climate and increases in input costs. The cultivation of plants that are better adapted than current crop species to nutrient poor soils, a dry climate and low-input agricultural systems would aid the continued profitability and environmental sustainability of agricultural systems. This paper examines herbaceous native Australian legumes for their capacity to be developed as grain crops adapted to dry environments. The 14 genera that contain herbaceous species areCanavalia, Crotalaria, Cullen, Desmodium, Glycine, Glycyrrhiza, Hardenbergia, Indigofera, Kennedia, Lotus, Rhynchosia, Swainsona, TrigonellaandVigna. A number of these genera (e.g.,Glycine, Crotalaria, TrigonellaandVigna) include already cultivated exotic grain legumes. Species were evaluated based on the extent to which their natural distribution corresponded to arid and semi-arid climatic regions, as well as the existing information on traits related to harvestability (uniformity of ripening, propensity to retain pod, pod shattering and growth habit), grain qualities (seed size, chemistry, color and the absence of toxins) and fecundity. Published data on seed yield were rare, and for many other traits information was limited. The Australian species ofVigna,CanavaliaandDesmodiummainly have tropical distributions and were considered poorly suited for semi-arid temperate cropping systems. Of the remaining generaGlycyrrhizaandCrotalariaspecies showed many suitable traits, including an erect growth habit, a low propensity to shatter, flowers and fruits borne at the end of branches and moderate to large seeds (5 and 38 mg, respectively). The species for which sufficient information was available that were considered highest priority for further investigation wereGlycine canescens, Cullen tenax, Swainsona canescens, Swainsona colutoides, Trigonella suavissima, Kennedia prorepens, Glycyrrhiza acanthocarpa, Crotalaria cunninghamiiandRhynchosia minima.


2014 ◽  
Vol 30 (6) ◽  
pp. 550-562 ◽  
Author(s):  
S. O'Connell ◽  
J.M. Grossman ◽  
G.D. Hoyt ◽  
W. Shi ◽  
S. Bowen ◽  
...  

AbstractThe environmental benefits of cover cropping are widely recognized but there is a general consensus that adoption levels are still quite low among US farmers. A survey was developed and distributed to more than 200 farmers engaged in two sustainable farming organizations in NC and the surrounding region to determine their level of utilization, current practices and perceptions related to cover cropping. The majority of farms surveyed had diverse crop production, production areas <8 ha, and total gross farm incomes <US$50,000. Approximately one-third of the survey population had an organic production component. Eighty-nine percent of participants had a crop rotation plan and 79% of the total survey population utilized cover cropping. More than 25 different cool- and warm-season cover crops were reported. The statements that generated the strongest agreement about cover crop benefits were that cover crops: increase soil organic matter, decrease soil erosion, increase soil moisture, contribute nitrogen to subsequent cash crops, suppress weeds, provide beneficial insect habitat and break hard pans with their roots. Economic costs associated with cover cropping were not viewed as an obstacle to implementation. A factor analysis was conducted to identify underlying themes from a series of positive and negative statements about cover crops. Pre- and post-management challenges were able to explain the most variability (30%) among participant responses. Overall, participants indicated that the incorporation of residues was their greatest challenge and that a lack of equipment, especially for no-till systems, influenced their decisions about cover cropping. Farmers did not always appear to implement practices that would maximize potential benefits from cover crops.


2020 ◽  
Vol 5 (2) ◽  
pp. 127-132
Author(s):  
Yuriansyah Yuriansyah ◽  
Dulbari Dulbari ◽  
Hery Sutrisno ◽  
Arief Maksum

Excessive use of inorganic chemicals results in adverse impacts on land and plants. In the midst of the community, there is anxiety about the high content of pesticide residues in agricultural products. There is a need to develop alternative farming systems that are able to produce quantities and quality of healthy products in a sustainable manner. One agricultural system that supports the concept is the organic farming system. The basic principles of organic farming are: (1) Keeping the ecosystem healthy, (2) Applying the principle of efficiency to the cultivation system, (3) Conducting production activities with the concept of sustainable agriculture, (4) Producing pesticide-free products, and (6) Maintaining environmental sustainability. Food Crop Production Study Program Lampung State Polytechnic makes Organic Agriculture as one of the leading competencies for its graduates. The establishment of the Organic Agriculture Business Unit on campus will increase student competencies, foster entrepreneurship, be a place for competency internships, and as an independent source of income.


2018 ◽  
Vol 35 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Alejandro Plastina ◽  
Fangge Liu ◽  
Fernando Miguez ◽  
Sarah Carlson

AbstractDespite being generally accepted as a promising conservation practice to reduce nitrate pollution and promote soil sustainability, cover crop adoption in Midwestern US agriculture is low. Based on focus groups, surveys and partial budgets, we calculated the annual net returns to cover crop use for farmers in Illinois, Iowa and Minnesota; and elicited farmers’ perceptions about the pros and cons of incorporating cover crops to their row cropping systems. The novelty of our methodology resides in comparing each farmer's practices in the portion of their cropping system with cover crops (typically small), against their practices in the other portion of their cropping system without cover crops. The resulting comparisons, accounting for farmer heterogeneity, are more robust than the typical effects calculated by comparing indicators across cover crop users and unrelated non-adopters. Our results highlight the complicated nature of integrating cover crops into the crop production system and show that cover crops affect whole farm profitability through several channels besides establishment and termination costs. Despite farmers’ positive perceptions about cover crops and the availability of cost-share programs, calculated annual net returns to cover crops use were negative for most participants.


Sign in / Sign up

Export Citation Format

Share Document