Cereal cover crops for weed suppression in a summer fallow-wheat cropping sequence

2000 ◽  
Vol 80 (2) ◽  
pp. 441-449 ◽  
Author(s):  
J. R. Moyer ◽  
R. E. Blackshaw ◽  
E. G. Smith ◽  
S. M. McGinn

Cropping systems in western Canada that include summer fallow can leave the soil exposed to erosion and require frequent weed control treatments. Cover crops have been used for soil conservation and to suppress weed growth. Experiments were conducted under rain-fed conditions at Lethbridge, Alberta to determine the effect of short-term fall rye (Secale cereale L.), winter wheat (Triticum aestivum L.) and annual rye cover crops in the fallow year on weed growth and subsequent wheat yield. Under favorable weather conditions fall rye was as effective as post-harvest plus early spring tillage or herbicides in spring weed control. Winter wheat and fall rye residues, after growth was terminated in June, reduced weed biomass in September by 50% compared to no cover crop in 1993 but had little effect on weeds in 1995. Fall-seeded cover crops reduced the density of dandelion (Taraxacum officinale Weber in Wiggers) and Canada thistle [Cirsium arvense (L.) Scop.] but increased the density of downy brome (Bromus tectorum L.), wild buckwheat (Polygonum convolvulus L.), and thyme-leaved spurge (Euphorbia serpyllifolia Pers.) in the following fall or spring. Wheat yields after fall rye and no cover crop were similar but yields after spring-seeded annual rye were less than after no cover crop. Spring-seeded annual rye did not adequately compete with weeds. Cover crops, unlike the no cover crop treatment, always left sufficient plant residue to protect the soil from erosion until the following wheat crop was seeded. Key words: Allelopathies, fall rye, nitrogen, soil conservation, soil moisture, weed control, spring rye, winter wheat

2010 ◽  
Vol 90 (4) ◽  
pp. 479-488 ◽  
Author(s):  
R E Blackshaw ◽  
L J Molnar ◽  
J R Moyer

Farmers on the Canadian prairies are interested in including legume cover crops in their cropping systems to reduce fertilizer inputs and improve farm sustainability. A field study was conducted to determine the merits of establishing alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.) or Austrian winter pea (Pisum sativum L.) cover crops in fall or in spring with winter wheat (Triticum aestivum L.). Spring-planted legumes emerged well within the winter wheat crop, but their growth was limited under these semi-arid conditions. Fall-planted red clover had low plant densities following winter in two of three experiments and fall-planted winter pea reduced winter wheat yield by 23 to 37% compared with the no cover crop control. In contrast, fall-planted alfalfa exhibited good winterhardiness, provided some weed suppression without reducing winter wheat yield, caused only a slight reduction in soil water content, and contributed an extra 18 to 20 kg ha-1 of available soil N at the time of seeding the following spring crop. Additionally, fall-planted alfalfa increased the yield of succeeding canola (Brassica napus L.) in unfertilized plots in two of three experiments. Further research is warranted to better understand the agronomic and economic benefits of alfalfa-winter wheat intercrops under a wider range of environmental conditions.Key words: Cover crops, intercropping, relay crops, soil nitrogen, soil conservation


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 442B-442
Author(s):  
Christine Crosby ◽  
Hector Valenzuela ◽  
Bernard Kratky ◽  
Carl Evensen

In the tropics, weed control is a year-round concern. The use of cover crops in a conservation tillage system allows for the production of a crop biomass that can be killed and mowed, and later used as mulching material to help reduce weed growth. This study compared yields of three vegetable species grown in two conventional tillage systems, one weeded and one unweeded control, and in two no-tillage treatments using two different cover crop species, oats (Avena sativa L. `Cauyse') and rye grain (Secale cereale L.). The cover crops were seeded (112 kg/ha) in Spring 1998 in 4 × 23-m plots in a RCB design with six replications per treatment, and mowed down at the flowering stage before transplanting the seedlings. Data collection throughout the experimental period included quadrant weed counts, biomass levels, and crop marketable yields. Weed suppression was compared with the yields of the vegetable crops. The greatest vegetable yields were in the conventionally hand-weeded control and the worst in the un-weeded controls. Weed species composition varied depending on the cover crop species treatment. The rye better suppressed weed growth than the oats, with greater control of grass species. Rye, however, suppressed romaine and bell pepper yields more than the oat treatments. Similarly greater eggplant yields and more fruit per plant were found in the oat treatment than in the rye. Both cover crops suppressed weed growth for the first month; however, by the second month most plots had extensive weed growth. This study showed that at the given cover crop seeding rate, the mulch produced was not enough to reduce weed growth and provide acceptable yields of various vegetable crops.


Crop Science ◽  
2019 ◽  
Vol 59 (4) ◽  
pp. 1745-1752 ◽  
Author(s):  
Abdel Mesbah ◽  
Abdelaziz Nilahyane ◽  
Binod Ghimire ◽  
Leslie Beck ◽  
Rajan Ghimire

2009 ◽  
Vol 60 (6) ◽  
pp. 517 ◽  
Author(s):  
J. P. M. Whish ◽  
L. Price ◽  
P. A. Castor

During the 14-month-long fallow that arises when moving from summer to winter crops, stubble breakdown can denude the soil surface and leave it vulnerable to erosion. Cover crops of millet have been proposed as a solution, but this then raises the question, how often is there sufficient water in the system to grow a cover crop without reducing the soil water reserves to the point of prejudicing the following wheat crop? An on-farm research approach was used to compare the traditional long fallow (TF) with a millet fallow (MF) in a total of 31 commercial paddocks over 3 years. Each treatment was simulated using the simulation-modelling framework (APSIM) to investigate the outcomes over a longer timeframe and to determine how often a millet fallow could be successfully included within the farming system. The on-farm trials showed that early-sown millet cover crops removed before December had no effect on wheat yield, but this was not true of millet cover crops that were allowed to grow through to maturity. Long-term simulations estimated that a spring cover crop of millet would adversely affect wheat yields in only 2% of years if planted early and removed after 50% cover had been achieved.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 596-602 ◽  
Author(s):  
Reid J. Smeda ◽  
Stephen C. Weller

Weed control in tomato production systems is difficult because few are registered. The use of rye for weed control and its influence on transplant tomato yields was investigated during 1986 and 1987 at two locations in IN to determine if cover crops can provide an alternative weed management technique. ‘Wheeler’ rye was sown in the fall of 1985 and 1986, and mowed or desiccated with glyphosate at various times before planting ‘IND 812'tomatoes. At the time of glyphosate application, rye residues reduced the growth of overwintering weeds by 93% or more compared to bare ground (no cover crop) areas. The time of desiccating rye prior to planting tomatoes affected the extent of weed suppression by rye residues. In 1986, rye treated 4 wk before planting (WBP) tomatoes provided up to 89% suppression of weed growth at 2 wk after planting (WAP) tomatoes, but no measurable weed suppression 5 WAP tomatoes. Rye treated 2 WBP tomatoes provided up to 97% weed suppression up to 5 WAP tomatoes. In 1987, weed suppression varied between locations and differed from 1986. At Lafayette, rye treated 2 and 1 WBP tomatoes provided greater than 81% suppression of weed growth up to 8 WAP tomatoes. Rye mowed and the residues placed into a plot at a known density also reduced weed growth (60%) 8 WAP tomatoes. At Vincennes, however, rye treated 2 and 1 WBP in 1987 did not reduce weed growth later than 4 WAP tomatoes compared to the unweeded, bare ground treatment. The mowed rye residues at Vincennes suppressed weed growth (96%) up to 8 WAP tomatoes. Tomato yield was correlated to weed suppression. In 1986, tomato yield in the rye treated 2 WBP tomatoes was comparable to yield in the bare ground, weeded controls. However, tomato yield in rye plots treated 4 WBP tomatoes was similar to yield in the bare ground, unweeded control. In 1987, tomato yields in all rye plots (mowed, treated 2 and 1 WBP tomatoes) were similar to tomato yields in the bare ground, weeded control at Lafayette. At Vincennes, only the mowed rye treatment yielded comparably to the bare ground, weeded control. In general, rye plots that were weeded yielded similar to or up to 28% more than a bare ground, weeded control. Tomato yields were not reduced by rye residues. Tomato yields in rye residues that provided effective suppression of weed growth (greater than 80%) for a minimum of 4 to 5 WAP tomatoes were comparable to bare ground, weeded controls.


2017 ◽  
Vol 63 (No. 2) ◽  
pp. 82-88 ◽  
Author(s):  
Sturm Dominic J ◽  
Kunz Christoph ◽  
Peteinatos Gerassimos ◽  
Gerhards Roland

The weed suppressive ability of oilseed radish (Raphanus sativus var. oleiformis Pers.) cover crop is attributed to high competitiveness for resources and biochemical effects on weeds. The oilseed radish cover crop was sown in five treatments plus an untreated control over a period of five weeks before and three weeks after winter wheat harvest. Additionally, fertilization effects on oilseed radish biomass and weed suppression were measured. The highest biomass of the cover crop was observed 12 weeks after harvest (WAH) when the oilseed radish was sown one week after harvest (1 WAH) (2015) and five weeks before harvest (5 WBH) (2016). No differences of fertilization were observed concerning oilseed radish and weed biomass in 2015, whereby increased biomass was found after fertilization in 2016. The highest weed control efficacy of up to 83% and 90% was achieved in treatments 1 WAH (2015) and 5 WBH (2016) at 12 WAH. The early sowing of oilseed radish in winter wheat resulted in low germination and biomass yield within the field, due to low precipitation in 2015. Nevertheless, there is a high potential of early sown oilseed radish for higher weed control efficacy, which was demonstrated in 2016.  


2019 ◽  
Vol 10 (1) ◽  
pp. 107-121 ◽  
Author(s):  
J. Salonen ◽  
E. Ketoja

Abstract Adoption of reduced tillage in organic cropping has been slow, partly due to concerns about increasing weed infestation. Undersown cover crops (CCs) are considered to be a feasible option for weed management but their potential for weed suppression is insufficiently investigated in low-till organic cropping. The possibilities to reduce primary tillage by introducing CCs to maintain weed infestation at a level that does not substantially jeopardize crop yield were studied in a field experiment in southern Finland during 2015–2017. Eight different CC mixtures were undersown in cereals and the response in weed occurrence was consecutively assessed in spring barley, winter wheat, and finally, as a subsequent effect, in spring wheat. Growth of CCs was too slow to prevent the flush of early emerging weeds in spring barley whereas in winter wheat, CCs succeeded in hindering the growth of weeds. However, CCs could not prevent the increase of perennial weeds in a reduced tillage system in which the early growth of spring wheat was retarded in cool 2017. Consequently, after 2 years of reduced tillage, weed biomass was about 2.6 times higher and spring wheat yield was 30% lower than in plowed plots, respectively. No major differences in weed control efficacy among CC treatments were evident. A grain yield benefit was recorded after repeated use of leguminous CCs. The need for long-term field studies remains of particular interest regarding post-harvest performance and influence of CCs on perennial weeds before the inversion tillage.


Author(s):  
Silvia Fogliatto ◽  
Lorenzo Patrucco ◽  
Fernando De Palo ◽  
Barbara Moretti ◽  
Marco Milan ◽  
...  

A field study was carried out in 2017 and 2018 in two Italian rice farms (at Livorno Ferraris and Rovasenda) to assess the effect of using cover crops as green mulching on weed control and rice yield. In each site, three different rice fields were sown after rice harvest with either Vicia villosa, Lolium multiflorum, or a mixture of both (V. villosa 40% + L. multiflorum 60%); at Rovasenda a small percentage of Brassica napus and Triticale was also present in the mixture. An additional field at both sites without cover crop was considered as a control reference. Rice was broadcasted sown within the cover crop in May. After few days, the cover crop was terminated in half of each field using a roller-crimper, while in the other half it was terminated by shredding. Within 10 days, the fields were flooded for about a week to promote the degradation of the cover crop biomass. Then, the fields were cultivated in flooding conditions without further weed control. Weed density and weed cover were evaluated thrice during the growing season. At harvest, rice yield and harvest index were determined. Mixed nested ANOVAs were performed for each site to assess the effect of cover crop species, termination technique, and the interaction between cover crop and year. L. multiflorum showed a high biomass before termination, while V. villosa had a more variable development. At Rovasenda, V. villosa growth was limited because of the combination of scarce emergence due to sod-seeding and frost damage. In general, green mulching significantly affected weed density. The best weed suppression was observed with L. multiflorum and mix at Rovasenda, with values of weed density <40 plants m-2 recorded in 2018. At both sites, rice yield was variable in the two years. The highest rice yield (>5 t ha-1) was observed in 2018 in the shredded mixture at Rovasenda and in V. villosa at Livorno Ferraris in 2017. Generally, control fields showed lower yields (1-3 t ha-1) at both sites. The termination methods did not significantly affect both weed density and rice yield. The results highlighted that green mulching could reduce weed infestations, even though alone is not able to completely avoid weed development. Some critical issues of the technique were observed, such as the need of a good cover crop establishment, that eventually results in abundant biomass production and significant weed suppression.   Highlights - Green mulching reduces weed pressure but it should be integrated with other weed control techniques. - Hairy vetch showed poor establishment because of the combination of scarce emergence due to sod-seeding and low temperatures. - Italian ryegrass was more tolerant to low temperatures and showed a good cover that contained weed growth. - Cover crop mixture showed variable results with higher suppression probably related to the number of cover crop species present in the mixture. - The termination methods (crimping and shredding) did not affect weed density and rice yield.


Author(s):  
Maryse Bourgault ◽  
Samuel A. Wyffels ◽  
Julia M. Dafoe ◽  
Peggy F. Lamb ◽  
Darrin L. Boss

Abstract The introduction of cover crops as fallow replacement in the traditional cereal-based cropping system of the Northern Great Plains has the potential to decrease soil erosion, increase water infiltration, reduce weed pressure and improve soil health. However, there are concerns this might come at the cost of reduced production in the subsequent wheat crop due to soil water use by the cover crops. To determine this risk, a phased 2-year rotation of 15 different cover crop mixtures and winter wheat/spring wheat was established at the Northern Agricultural Research Center near Havre, MT from 2012 to 2020, or four rotation cycles. Controls included fallow–wheat and barley–wheat sequences. Cover crops and barley were terminated early July by haying, grazing or herbicide application. Yields were significantly decreased in wheat following cover crops in 3 out of 8 years, up to maximum of 1.4 t ha−1 (or 60%) for winter wheat following cool-season cover crop mixtures. However, cover crops also unexpectedly increased following wheat yields in 2018, possibly due in part to residual fertilizer. Within cool-, mid- and warm-season cover crop groups, individual mixtures did not show significant differences impact on following grain yields. Similarly, cover crop termination methods had no impact on spring or winter wheat grain yields in any of the 8 years considered. Wheat grain protein concentration was not affected by cover crop mixtures or termination treatments but was decreased in winter wheat following barley. Differences in soil water content across cover crop groups were only evident at the beginning of the third cycle in one field, but important reductions were observed below 15 cm in the last rotation cycle. In-season rainfall explained 43 and 13% of the variability in winter and spring wheat yields, respectively, compared to 2 and 1% for the previous year cover crop biomass. Further economic analyses are required to determine if the integration of livestock is necessary to mitigate the risks associated with the introduction of cover crops in replacement of fallow in the Northern Great Plains.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1063D-1064
Author(s):  
Thomas Björkman

Buckwheat has historically been used to suppress weeds and improve soil condition, but many of the tricks to success have been lost to history. Buckwheat is inexpensive and particularly effective in short windows between crops. We are documenting the techniques of existing experts and complementing that with research. We surveyed northeastern vegetable and strawberry growers to identify what information they need in order to feel confident that they could succeed with a buckwheat cover crop. Top questions include seed availability, types of weeds controlled, relation to other cover crops, volunteer management, and herbicide tolerance. One question tested experimentally was how to establish a full stand with minimum cost. We tested the minimum tillage requirement following pea harvest. No-till resulted in good emergence but slow growth, and dominance by weeds. Disk incorporating the pea residue resulted in excellent growth, which was not further enhanced by chisel plowing before disking. Buckwheat seedlings are intolerant of waterlogging, so deeper tillage may be important in wet years. Sowing buckwheat immediately after tillage resulted in emergence of 35%, leaving gaps large enough for weeds to grow. Waiting 1 week gave an 80% stand and complete weed suppression. Waiting 2 weeks also gave an 80% stand, but weed growth was advanced enough that weed suppression was incomplete. Therefore, a buckwheat cover crop following early vegetables requires light tillage to permit root growth, and up to a week of decomposition. If those provisions are made, complete weed suppression is obtainable.


Sign in / Sign up

Export Citation Format

Share Document