scholarly journals Neutral Gas and Metals From z = 4 to z = 0.5

2006 ◽  
Vol 2 (S235) ◽  
pp. 273-274
Author(s):  
Céline Péroux

AbstractA complementary method to the emission selection of high-redshift galaxies consists in the observation of absorbers along the line of sight toward a background quasar. This selection technique has a constant sensitivity at all redshifts up to z = 6 (i.e. no redshift desert) and allow to select all types of galaxies regardless of their luminosity or star formation rate. The highest column density absorbers, the Damped Lyman-α (DLAs) systems, in particular, can be used to determine the cosmic evolution of HI gas in the Universe, ΩHI, and the global metallicity in the gas phase. Since stars are known to form from HI gas, ΩHI provides an indirect tracer of the history of star formation. Recent results from several parallel VLT programmes aiming at determining the cosmological evolution of the metallicity in the neutral gas phase are presented.

2005 ◽  
Vol 216 ◽  
pp. 309-324
Author(s):  
Amy Barger

Mapping the history of star formation requires combining observations at many wavelengths. The most dramatic episodes of star formation occurred in high-redshift (z > 1) galaxies obscured by dust. These galaxies can be seen at submillimeter wavelengths. While these episodes clearly constitute much of the star formation in the universe, we still do not know the redshift distribution. Although progess has been made in determining the nature of the brightest members of the submillimeter population, these galaxies comprise only a tiny fraction of the submillimeter extragalactic background light. Optical star formation, by contrast, is well mapped but hard to interpret because of the problems of extinction. At recent times there is still substantial star formation, but it primarily takes place in small galaxies. This cosmic downsizing is paralleled by similar evolution in the properties of AGNs.


2019 ◽  
Vol 15 (S341) ◽  
pp. 226-230
Author(s):  
Christian Binggeli ◽  
Erik Zackrisson ◽  
Xiangcheng Ma ◽  
Akio K. Inoue ◽  
Anton Vikaeus ◽  
...  

AbstractRecently, spectroscopic detections of O[III] 88 μm and Ly-α emission lines from the z ≍ 9.1 galaxy MACS1149-JD1 have been presented, and with these, some interesting properties of this galaxy were uncovered. One such property is that MACS1149-JD1 exhibits a significant Balmer break at around rest-frame 4000 Å, which may indicate that the galaxy has experienced large variations in star formation rate prior to z ∼ 9, with a rather long period of low star formation activity. While some simulations predict large variations in star formation activity in high-redshift galaxies, it is unclear whether the simulations can reproduce the kind of variations seen in MACS1149-JD1. Here, we utilize synthetic spectra of simulated galaxies from two simulation suites in order to study to what extent these can accurately reproduce the spectral features (specifically the Balmer break) observed in MACS1149-JD1. We show that while the simulations used in this study produce galaxies with varying star formation histories, galaxies such as MACS1149-JD1 would be very rare in the simulations. In principle, future observations with the James Webb Space Telescope may tell us if MACS1149-JD1 represents something rare, or if such galaxies are more common than predicted by current simulations.


2020 ◽  
Vol 58 (1) ◽  
pp. 363-406 ◽  
Author(s):  
Céline Péroux ◽  
J. Christopher Howk

Characterizing the relationship between stars, gas, and metals in galaxies is a critical component of understanding the cosmic baryon cycle. We compile contemporary censuses of the baryons in collapsed structures and their chemical makeup and dust content. We show the following: ▪  The [Formula: see text] mass density of the Universe is well determined to redshifts [Formula: see text] and shows minor evolution with time. New observations of molecular hydrogen reveal its evolution mirrors that of the global star-formation rate density, implying a universal cosmic molecular gas depletion timescale. The low-redshift decline of the star-formation history is thus driven by the lack of molecular gas supply due to a drop in net accretion rate related to the decreased growth of dark matter halos. ▪  The metal mass density in cold gas ([Formula: see text] K) contains virtually all the metals produced by stars for [Formula: see text]. At lower redshifts, the contributors to the total amount of metals are more diverse; at [Formula: see text], most of the observed metals are bound in stars. Overall, there is little evidence for a “missing metals problem” in modern censuses. ▪  We characterize the dust content of neutral gas over cosmic time, finding the dust-to-gas and dust-to-metals ratios fall with decreasing metallicity. We calculate the cosmological dust mass density in the neutral gas up to [Formula: see text]. There is good agreement between multiple tracers of the dust content of the Universe.


2006 ◽  
Vol 2 (S235) ◽  
pp. 430-430
Author(s):  
Yoichi Tamura ◽  
Kouichiro Nakanishi ◽  
Kotaro Kohno ◽  
Ryohei Kawabe

AbstractWe present a new diagnosis method for determining physical properties of star-forming gas in high-z galaxies. In this method, we employed three key observational quantities, [CI], CO, and FIR luminosities, including our new detections of CO J = 4–3 emission from the pure-starburst (non-AGN) submm galaxy SMM J14011+0252 (z = 2.6) and the type-2 AGN IRAS FSC 10214+4724 (z = 2.3) obtained with the Nobeyama Millimeter Array (NMA) at the Nobeyama Radio Observatory. These two sources have extremely high star formation rate, and exhibit strong emission of CO and [CI] 609 μm lines. We determined ISM physical conditions for the two objects and another three high-z quasars in order to investigate the relationship between their ISM and power sources (i.e., massive star formation or AGN). A new PDR analysis (Wolfire et al. 2005, private communication) using CO, [CI], and FIR on five high-z sources provides new evidence that AGN host galaxies harbor denser (log nH ~ 5–6) ISM exposed to stronger far-UV fluxes of log G0 ~ 3.5–4 than the non-AGN submm galaxy. Volume filling factors of the star-forming dense gas in the AGN hosts are an order of magnitude smaller than that of the pure-starburst submm galaxy. This suggests that, in these AGN hosts, dense molecular clouds are dominating the central kpc around AGN, triggering extensive circumnuclear starbursts, and possibly feeding their central supermassive black hole simultaneously.


1999 ◽  
Vol 190 ◽  
pp. 8-14
Author(s):  
F.D.A. Hartwick

We use observations and evolutionary models of local objects to interpret a recent determination of the star-formation history of the universe. By fitting the global star-formation rate, the model predicts the ratio of spheroid to disk mass of ~1, an intergalactic medium (IGM) whose mass is ~2.3 times the mass in stars, and whose metallicity is ~0.1 Z⊙.


2007 ◽  
Vol 3 (S244) ◽  
pp. 284-288
Author(s):  
Lise Christensen

AbstractI present results from an ongoing survey to study galaxies associated with damped Lyman-α (DLA) systems at redshifts z>2. Integral field spectroscopy is used to search for Lyα emission line objects at the wavelengths where the emission from the quasars have been absorbed by the DLAs. The DLA galaxy candidates detected in this survey are found at distances of 10–20 kpc from the quasar line of sight, implying that galaxies are surrounded by neutral hydrogen at large distances. If we assume that the distribution of neutral gas is exponential, the scale length of the neutral gas is ~6 kpc, similar to large disk galaxies in the local Universe. The emission line luminosities imply smaller star formation rates compared to other high redshift galaxies found in luminosity selected samples.


2006 ◽  
Vol 2 (14) ◽  
pp. 248-248
Author(s):  
Andrew J. Bunker ◽  
Elizabeth R. Stanway ◽  
Laurence P. Eyles ◽  
Richard S. Ellis ◽  
Richard G. McMahon ◽  
...  

AbstractWe discuss the selection of star-forming galaxies at z≃6 through the Lyman-break technique. Spitzer imaging implies many of these contain older stellar populations (>200Myr) which produce detectable Balmer breaks. The ages and stellar masses (∼1010M⊙) imply that the star formation rate density at earlier epochs may have been significantly higher than at z≃6, and might have played a key role in re-ionizing the universe.


2011 ◽  
Vol 7 (S279) ◽  
pp. 224-231
Author(s):  
Andrew J. Bunker

AbstractThere has been great progress in recent years in discovering star forming galaxies at high redshifts (z > 5), close to the epoch of reionization of the intergalactic medium (IGM). The WFC3 and ACS cameras on the Hubble Space Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 − 8 seems to be much lower than at z = 2 − 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).


Science ◽  
2013 ◽  
Vol 340 (6140) ◽  
pp. 1229229 ◽  
Author(s):  
Mordecai-Mark Mac Low

From the time the first stars formed over 13 billion years ago to the present, star formation has had an unexpectedly dynamic history. At first, the star-formation rate density increased dramatically, reaching a peak 10 billion years ago of more than 10 times the present-day value. Observations of the initial rise in star formation remain difficult, poorly constraining it. Theoretical modeling has trouble predicting this history because of the difficulty in following the feedback of energy from stellar radiation and supernova explosions into the gas from which further stars form. Observations from the ground and space with the next generation of instruments should reveal the full history of star formation in the universe, and simulations appear poised to accurately predict the observed history.


Sign in / Sign up

Export Citation Format

Share Document