scholarly journals The structure of the nuclear stellar cluster of the Milky Way

2006 ◽  
Vol 2 (S238) ◽  
pp. 187-190
Author(s):  
Rainer Schödel ◽  
Andreas Eckart

AbstractHigh-resolution adaptive optics observations of the inner 0.5 pc of the Milky Way with multiple intermediate band filters are presented. From the images, stellar number counts and a detailed map of the interstellar extinction were extracted. The extinction map is consistent with a putative southwest-northeast aligned outflow from the central arcseconds.An azimuthally averaged, crowding and extinction corrected stellar density profile presents clear evidence for the existence of a stellar cusp around Sgr A*. Several density peaks are found in the cluster that may indicate clumping of stars, possibly related to the last epoch of star formation in the Galactic Center. An analysis of stars in the brightness range 14.25 < magK < 15.75 shows possible signs of mass segregation.

2020 ◽  
Vol 634 ◽  
pp. A71 ◽  
Author(s):  
E. Gallego-Cano ◽  
R. Schödel ◽  
F. Nogueras-Lara ◽  
H. Dong ◽  
B. Shahzamanian ◽  
...  

Context. The Milky Way nuclear star cluster (MWNSC) is a crucial laboratory for studying the galactic nuclei of other galaxies, but its properties have not been determined unambiguously until now. Aims. We aim to study the size and spatial structure of the MWNSC. Methods. This study uses data and methods that address potential shortcomings of previous studies on the topic. We use 0.2″ angular resolution Ks data to create a stellar density map in the central 86.4 pc × 21 pc at the Galactic center. We include data from selected adaptive-optics-assisted images obtained for the inner parsecs. In addition, we use Spitzer/IRAC mid-infrared (MIR) images. We model the Galactic bulge and the nuclear stellar disk in order to subtract them from the MWNSC. Finally, we fit a Sérsic model to the MWNSC and investigate its symmetry. Results. Our results are consistent with previous work. The MWNSC is flattened with an axis ratio of q = 0.71 ± 0.10, an effective radius of Re = (5.1 ± 1.0) pc, and a Sérsic index of n = 2.2 ± 0.7. Its major axis may be tilted out of the Galactic plane by up to −10°. The distribution of the giants brighter than the Red Clump (RC) is found to be significantly flatter than the distribution of the faint stars. We investigate the 3D structure of the central stellar cusp using our results on the MWNSC structure on large scales to constrain the deprojection of the measured stellar surface number density, obtaining a value of the 3D inner power law of γ = 1.38 ± 0.06sys ± 0.01stat. Conclusions. The MWNSC shares its main properties with other extragalactic NSCs found in spiral galaxies. The differences in the structure between bright giants and RC stars might be related to the existence of not completely mixed populations of different ages. This may hint at recent growth of the MWNSC through star formation or cluster accretion.


2013 ◽  
Vol 9 (S303) ◽  
pp. 228-229
Author(s):  
Devaky Kunneriath ◽  
Rainer Schödel ◽  
Susan Stolovy ◽  
Anja Feldmeier

AbstractNuclear star clusters are unambiguously detected in about 50–70% of spiral and spheroidal galaxies. They have typical half-light radii of 2–5 pc, dynamical mass ranging from 106 – 107 M⊙, are brighter than globular clusters, and obey similar scaling relations with host galaxies as supermassive black holes. The nuclear stellar cluster (NSC) which surrounds Sgr A*, the SMBH at the center of our galaxy, is the nearest nuclear cluster to us, and can be resolved to scales of milliparsecs. The strong and highly variable extinction towards the Galactic center makes it very hard to infer the intrinsic properties of the NSC (structure and size). We attempt a new way to infer its properties by using Spitzer MIR images in a wavelength range 3–8 μm where the extinction is at a minimum, and the NSC clearly stands out as a separate structure. We present results from our analysis, including extinction-corrected images and surface brightness profiles of the central few hundred parsecs of the Milky Way.


2002 ◽  
Vol 207 ◽  
pp. 132-134
Author(s):  
Andrea Stolte ◽  
Eva K. Grebel ◽  
Wolfgang Brandner ◽  
Donald F. Figer

The Arches cluster - located only 11′ from the Galactic Center (GC) - is one of the densest and richest young star clusters in the Milky Way. With an age of only about 2 Myr, it is ideally suited to study massive cluster formation in an extreme environment. We find an IMF slope of Γ = −0.77 from 5 to 100 M⊙, in good agreement with the results from HST/NICMOS from Figer et al. (1999). The limiting factor in the dense cluster center is crowding. With the new AO systems, high resolution analysis of the dense cluster region combined with very deep infrared photometry is available. We have analysed deep H and K′ images of the cluster center obtained with the GEMINI/Hokupa'a adaptive optics system. Colour-magnitude diagrams and the IMF are constructed from these data. A comparison with isochrones yields the mass function.


1998 ◽  
Vol 184 ◽  
pp. 433-434
Author(s):  
A. M. Ghez ◽  
B. L. Klein ◽  
C. McCabe ◽  
M. Morris ◽  
E. E. Becklin

Although the notion that the Milky Way galaxy contains a supermassive central black hole has been around for more than two decades, it has been difficult to prove that one exists. The challenge is to assess the distribution of matter in the few central parsecs of the Galaxy. Assuming that gravity is the dominant force, the motion of the stars and gas in the vicinity of the putative black hole offers a robust method for accomplishing this task, by revealing the mass interior to the radius of the objects studied. Thus objects located closest to the Galactic Center provide the strongest constraints on the black hole hypothesis.


2013 ◽  
Vol 9 (S303) ◽  
pp. 150-152 ◽  
Author(s):  
N. Sabha ◽  
M. Zamaninasab ◽  
A. Eckart ◽  
L. Moser

AbstractWe find a convex-like feature at a distance of 0.68 pc (17″) from the position of the supermassive black hole, Sgr A*, at the center of the nuclear stellar cluster. This feature resembles a stellar bow shock with a symmetry axis pointing to the center. We discuss the possible nature of the feature and the implications of its alignment with other dusty comet-like objects inside the central parsec.


1998 ◽  
Vol 184 ◽  
pp. 435-436
Author(s):  
M. J. Reid ◽  
A. C. S. Readhead ◽  
R. Vermeulen ◽  
R. Treuhaft

In 1918, Harlow Shapley first noted that globular clusters were concentrated toward the constellation of Sagittarius, and hence the Sun was not near the center of the Milky Way. Since that time astronomers have expended considerable effort to determine the distance to the center of the Milky Way, because any change in the value of this distance, R0, has a widespread impact on astronomy and astrophysics. Beginning in 1991, we have conducted observations with the VLBA designed to make possible a program to measure the distance to the Galactic Center via a trigonometric parallax. This could be accomplished with the VLBA using Sgr A∗ as a phase reference for one or more (weaker) compact extragalactic sources. A time series of measurements of the position of Sgr A∗ relative to an extragalactic source should show the effects of the annual ≈ ±0.12 mas signature of the Earth's orbit around the Sun (trigonometric parallax), as well as the ≈ 6 mas yr−1 secular motion caused by the Sun's orbit around the Galactic Center.


2007 ◽  
Vol 3 (S248) ◽  
pp. 470-473
Author(s):  
Z. Q. Shen ◽  
Y. Xu ◽  
J. L. Han ◽  
X. W. Zheng

AbstractWe describe the efforts to understand our Milky Way Galaxy, from its center to outskirts, including (1) the measurements of the intrinsic size of the galactic center compact radio source Sgr A*; (2) the determination of the distance from the Sun to the Perseus spiral arm; and (3) the revealing of large scale global magnetic fields of the Galaxy.With high-resolution millimeter-VLBI observations, Shen et al. (2005) have measured the intrinsic size of the radio-emitting region of the galactic center compact radio source Sgr A* to be only 1 AU in diameter at 3.5 mm. When combined with the lower limit on the mass of Sgr A*, this provides strong evidence for Sgr A* being a super-massive black hole. Comparison with the intrinsic size detection at 7 mm indicates a frequency-dependent source size, posing a tight constraint on various theoretical models.With VLBI phase referencing observations, Xu et al. (2006) have measured the trigonometric parallax of W3OH in the Perseus spiral arm with an accuracy of 10 μas and also its absolute velocity with an accuracy of 1 km s−1. This demonstrates the capability of probing the structure and kinematics of the Milky Way by determining distances to 12 GHz methanol (CH3OH) masers in star forming regions of distant spiral arms and Milky Way's outskirts.With pulsar dispersion measures and rotation measures, Han et al. (2006) can directly measure the magnetic fields in a very large region of the Galactic disk. The results show that the large-scale magnetic fields are aligned with the spiral arms but reverse their directions many times from the most inner Norma arm to the outer Perseus arm.


2005 ◽  
Vol 635 (2) ◽  
pp. 1087-1094 ◽  
Author(s):  
A. M. Ghez ◽  
S. D. Hornstein ◽  
J. R. Lu ◽  
A. Bouchez ◽  
D. Le Mignant ◽  
...  

2013 ◽  
Vol 9 (S303) ◽  
pp. 354-363 ◽  
Author(s):  
T. Storchi-Bergmann

AbstractI discuss feeding and feedback processes observed in the inner few hundred parsecs of nearby active galaxies using integral field spectroscopy at spatial resolutions of a few to tens of parsecs. Signatures of feedback include outflows from the nucleus with velocities ranging from 200 to 1000 km s−1, with mass outflow rates between 0.5 and a few M⊙ yr−1. Signatures of feeding include the observation of gas inflows along nuclear spirals and filaments, with velocities ranging from 50 to 100 km s−1 and mass flow rates from 0.1 to ∼1 M⊙ yr−1. These rates are 2–3 orders of magnitude larger than the mass accretion rate to the supermassive black hole (SMBH). These inflows can thus lead, during less than one activity cycle, to the accumulation of enough gas in the inner few hundred parsecs, to trigger the formation of new stars, leading to the growth of the galaxy bulge. Young to intermediate age stars have indeed been found in circumnuclear rings around a number of Active Galactic Nuclei (AGN). In particular, one of these rings, with radius of ≈ 100 pc is observed in the Seyfert 2 galaxy NGC 1068, and is associated to an off-centered molecular ring, very similar to that observed in the Milky Way (MW). On the basis of an evolutionary scenario in which gas falling into the nuclear region triggers star formation followed by the triggering of nuclear activity, we speculate that, in the case of the MW, molecular gas has already accumulated within the inner ≈ 100 pc to trigger the formation of new stars, as supported by the presence of blue stars close to the galactic center. A possible increase in the star-formation rate in the nuclear region will then be followed, probably tens of millions of years later, by the triggering of nuclear activity in Sgr A*.


2006 ◽  
Vol 2 (S238) ◽  
pp. 415-416
Author(s):  
K. Mužić ◽  
A. Eckart ◽  
R. Schödel ◽  
L. Meyer ◽  
A. Zensus

AbstractWe present the proper motion study of the thin filaments observed in L'-band (3.8 μm) adaptive optics images of the central parsec of the Milky Way. Observed filaments are associated with the mini-spiral and, in some cases, with stars. They can be interpreted as shock fronts formed by the interaction of a central wind with the mini-spiral or extended dusty stellar envelopes.


Sign in / Sign up

Export Citation Format

Share Document