scholarly journals DIVISION IV / WORKING GROUP MASSIVE STARS

2008 ◽  
Vol 4 (T27A) ◽  
pp. 236-239
Author(s):  
Stanley P. Owocki ◽  
Paul A. Crowther ◽  
Alexander W. Fullerton ◽  
Gloria Koenigsberger ◽  
Norbert Langer ◽  
...  

Our Working Group studies massive, luminous stars, with historical focus on early-type (OB) stars, but extending in recent years to include massive red supergiants that evolve from hot stars. There is also emphasis on the role of massive stars in other branches of astrophysics, particularly regarding starburst galaxies, the first stars, core-collapse gamma-ray bursts, and formation of massive stars.

Author(s):  
A. Kumar ◽  
S. B. Pandey ◽  
R. Gupta ◽  
A. Aryan ◽  
A. J. Castro-Tirado ◽  
...  

Newly installed 3.6m DOT at Nainital (Uttarakhand) is a novel facility for the time domain astronomy. Because of the longitudinal advantage of India, it could be used to study new transients reported by a global network of robotic telescopes. Observations with the 4K × 4K CCD Imager at the axial port of the 3.6m DOT will be very helpful in the near future towards understanding the different physical aspects of time-critical events, e.g., Gamma-ray bursts (GRBs), Supernovae, Gravitational wave candidates, etc. Using the Imager with broadband filters (Bessel UBVRI and SDSS ugriz), ~6.5' × 6.5' images could be obtained to attempt various science goals in synergy with other multi-band facilities. In this study, we present an analysis of unpublished R-band data of GRB 171205A/SN 2017iuk spanning between ~12 to 105 days since burst, that observed using the 3.6m DOT with 4K × 4K CCD Imager. In the R-band light curve, a bump appears to start from ~3 days, which shows the peak at ~15 days after the burst, clearly indicates photometric evidence of association of SN with GRB 171205A.


2000 ◽  
Vol 24 (1) ◽  
pp. 176-185
Author(s):  
Philippe Eenens ◽  
Joseph Cassinelli ◽  
Peter Conti ◽  
Catharine Garmany ◽  
Karel van der Hucht ◽  
...  

The Working Group on Hot Massive Stars has been officially recognized by the IAU Executive Committee during the XXIII General Assembly in August 1997. Its origins are the Hot Star Newsletter, launched in 1994, and a long tradition of interaction and collaborative research strengthened by a series of meetings on hot beaches. It gathers over 500 researchers working on OB stars, Luminous Blue Variables, Wolf-Rayet stars, and in general all topics related to the evolution of massive stars and to the physics and consequences of winds from hot stars. The very successful recent symposium on “Wolf-Rayet phenomena in massive stars and starburst galaxies” is an indicator of the increasing interest of the extragalactic community in the study of these extraordinary stars.


2014 ◽  
Vol 9 (S307) ◽  
pp. 41-46
Author(s):  
M. García ◽  
A. Herrero ◽  
F. Najarro ◽  
D. J. Lennon ◽  
M. A. Urbaneja

AbstractIn the race to break the SMC frontier and reach metallicity conditions closer to the First Stars the information from UV spectroscopy is usually overlooked. New HST-COS observations of OB stars in the metal-poor galaxy IC1613, with oxygen content ~1/10 solar, have proved the important role of UV spectroscopy to characterize blue massive stars and their winds. The terminal velocities (υ∞) and abundances derived from the dataset have shed new light on the problem of metal-poor massive stars with strong winds. Furthermore, our results question the υ∞-υesc and υ∞-Z scaling relations whose use in optical-only studies may introduce large uncertainties in the derived mass loss rates and wind-momenta. Finally, our results indicate that the detailed abundance pattern of each star may have a non-negligible impact on its wind properties, and scaling these as a function of one single metallicity parameter is probably too coarse an approximation. Considering, for instance, that the [α/Fe] ratio evolves with the star formation history of each galaxy, we may be in need of updating all our wind recipes.


2011 ◽  
Vol 7 (S279) ◽  
pp. 75-82
Author(s):  
Paolo A. Mazzali

AbstractThe properties of the Supernovae discovered in coincidence with long-duration Gamma-ray Bursts and X-Ray Flashes are reviewed, and compared to those of SNe for which GRBs are not observed. The SNe associated with GRBs are of Type Ic, they are brighter than the norm, and show very broad absorption lines in their spectra, indicative of high expansion velocities and hence of large explosion kinetic energies. This points to a massive star origin, and to the birth of a black hole at the time of core collapse. There is strong evidence for gross asymmetries in the SN ejecta. The observational evidence seems to suggest that GRB/SNe are more massive and energetic than XRF/SNe, and come from more massive stars. While for GRB/SNe the collapsar model is favoured, XRF/SNe may host magnetars.


2008 ◽  
Vol 4 (S252) ◽  
pp. 271-281 ◽  
Author(s):  
Jorick S. Vink

AbstractWe discuss the role of mass loss for the evolution of the most massive stars, highlighting the role of the predicted bi-stability jump that might be relevant for the evolution of rotational velocities during or just after the main sequence. This mechanism is also proposed as an explanation for the mass-loss variations seen in the winds from Luminous Blue Variables (LBVs). These might be relevant for the quasi-sinusoidal modulations seen in a number of recent transitional supernovae (SNe), as well as for the double-throughed absorption profile recently discovered in the Hα line of SN 2005gj. Finally, we discuss the role of metallicity via the Z-dependent character of their winds, during both the initial and final (Wolf-Rayet) phases of evolution, with implications for the angular momentum evolution of the progenitor stars of long gamma-ray bursts (GRBs).


2008 ◽  
Vol 4 (S256) ◽  
pp. 337-342
Author(s):  
Raphael Hirschi ◽  
Sylvia Ekström ◽  
Cyril Georgy ◽  
Georges Meynet ◽  
André Maeder

AbstractThe Magellanic Clouds are great laboratories to study the evolution of stars at two metallicities lower than solar. They provide excellent testbeds for stellar evolution theory and in particular for the impact of metallicity on stellar evolution. It is important to test stellar evolution models at metallicities lower than solar in order to use the models to predict the evolution and properties of the first stars. In these proceedings, after recalling the effects of metallicity, we present stellar evolution models including the effects of rotation at the Magellanic Clouds metallicities. We then compare the models to various observations (ratios of sub-groups of massive stars and supernovae, nitrogen surface enrichment and gamma-ray bursts) and show that the models including the effects of rotation reproduce most of the observational constraints.


2011 ◽  
Vol 7 (S279) ◽  
pp. 9-17
Author(s):  
Paul A. Crowther

AbstractThe locations of massive stars (≥ 8M⊙) within their host galaxies is reviewed. These range from distributed OB associations to dense star clusters within giant Hii regions. A comparison between massive stars and the environments of core-collapse supernovae and long duration Gamma Ray Bursts is made, both at low and high redshift. We also address the question of the upper stellar mass limit, since very massive stars (VMS, Minit ≫ 100M⊙) may produce exceptionally bright core-collapse supernovae or pair instability supernovae.


2005 ◽  
Vol 192 ◽  
pp. 543-553
Author(s):  
Abraham Loeb

SummaryGamma-Ray Bursts (GRBs) are believed to originate in compact remnants (black holes or neutron stars) of massive stars. Their high luminosities make them detectable out to the edge of the visible universe. We describe the many advantages of GRB afterglows relative to quasars as probes of the intergalactic medium during the epoch of reionization. The Swift satellite, planned for launch by the end of 2004, will likely open a new era in observations of the high redshift universe.


2008 ◽  
Vol 4 (S255) ◽  
pp. 182-188
Author(s):  
Ken'ichi Nomoto ◽  
Masaomi Tanaka ◽  
Yasuomi Kamiya ◽  
Nozomu Tominaga ◽  
Keiichi Maeda

AbstractThe very peculiar abundance patterns observed in extremely metal-poor (EMP) stars can not be explained by conventional normal supernova nucleosynthesis but can be well-reproduced by nucleosynthesis in hyper-energetic and hyper-aspherical explosions, i.e., Hypernovae (HNe). Previously, such HNe have been observed only as Type Ic supernovae. Here, we examine the properties of recent Type Ib supernovae (SNe Ib). In particular, SN Ib 2008D associated with the luminous X-ray transient 080109 is found to be a more energetic explosion than normal core-collapse supernovae. We estimate that the progenitor's main sequence mass is MMS = 20 − 25M⊙ with an explosion of kinetic energy of EK ~ 6.0 × 1051 erg. These properties are intermediate between those of normal SNe and hypernovae associated with gamma-ray bursts. Therefore, such energetic SNe Ib could also make an important contribution to the chemical enrichment in the early Universe.


2012 ◽  
Vol 84 (1) ◽  
pp. 25-63 ◽  
Author(s):  
André Maeder ◽  
Georges Meynet

Sign in / Sign up

Export Citation Format

Share Document