scholarly journals Feeding Versus Feedback in AGNs from Near-Infrared IFU Observations: The Case of Mrk 1066

2009 ◽  
Vol 5 (S267) ◽  
pp. 405-405
Author(s):  
Rogemar A. Riffel ◽  
Thaisa Storchi-Bergmann

Previous studies of the central region of active galaxies show that the molecular and ionized gas have distinct kinematics and flux distributions, with the former dominated by quiescent kinematics characteristic of rotation in the galactic plane and the latter with more disturbed kinematics and apparently extending to larger galactic latitudes. These results suggest that the molecular gas can be a tracer of the feeding of the AGN and the ionized gas a tracer of its feedback (e.g., Riffel et al. 2009, 2008, 2006; Storchi-Bergmann et al. 2009a, b). In the present study we use Gemini NIFS integral field observations of the inner 700×700 pc2 of the Seyfert galaxy Mrk 1066 at a spatial resolution of ~ 35 pc to investigate if the above scenario is also valid for this galaxy.

2020 ◽  
Vol 15 (S359) ◽  
pp. 391-395
Author(s):  
Sebastian F. Sánchez ◽  
Carlos Lopez Cobá

AbstractWe summarize here some of the results reviewed recently by Sanchez (2020) comprising the advances in the comprehension of galaxies in the nearby universe based on integral field spectroscopic galaxy surveys. In particular we explore the bimodal distribution of galaxies in terms of the properties of their ionized gas, showing the connection between the star-formation (quenching) process with the presence (absence) of molecular gas and the star-formation efficiency. We show two galaxy examples that illustrates the well known fact that ionization in galaxies (and the processes that produce it), does not happen monolitically at galactic scales. This highlight the importance to explore the spectroscopic properties of galaxies and the evolutionary processes unveiled by them at different spatial scales, from sub-kpc to galaxy wide.


1997 ◽  
Vol 159 ◽  
pp. 343-346
Author(s):  
P. Ferruit ◽  
E. Pécontal ◽  
G. Adam ◽  
R. Bacon

AbstractThe TIGER integral field spectrograph has been used to study nearby and distant active galaxies. We first present new TIGER observations of the Seyfert galaxy NGC 1275. In this very complex object, TIGER allows us to disentangle the contributions of the numerous components. We present the first very promising results on NGC 5252 obtained with the 3-D data-cube deconvolution techniques developed by our team in Lyon.


1995 ◽  
Vol 149 ◽  
pp. 298-299
Author(s):  
P. Martin ◽  
P.C. Pinet ◽  
R. Bacon ◽  
A. Rousset

AbstractHigh spectral and spatial resolution telescopic observations of the western hemisphere of Mars, using the integral field spectrograph TIGER at 0.8-1.1 µm, are described.


1998 ◽  
Vol 184 ◽  
pp. 93-94
Author(s):  
J.H. Knapen

I discuss the role of galactic bars in the fuelling of (circum)nuclear activity. Since the majority of all galaxies are barred, the presence of a bar in a Seyfert galaxy cannot be the sole reason for their activity, although it appears to be a necessary condition for activity. Two options for further work are being explored, high-resolution near-infrared imaging of samples of active and non-active galaxies, and detailed case studies of selected galaxy cores.


Observational study of protostars and their immediate environs has recently become possible as a result of advances in infrared spectroscopy, especially in the near infrared (A = 2—5 pm). Although such stars are totally obscured at optical wavelengths by the enshrouding dust and gas from which they formed, the near infrared spectroscopy has yielded detection of emission lines from both ionized gas and high excitation molecular gas ( T >2000 K) probably within a few astronomical units of several such sources (e.g. the BN object in the Orion nebula). The former lines provide the first constraints on the spectral type and temperature of the protostar; the latter reveal the physical conditions (density and temperature) and gas dynamics in the immediate protostellar nebula. . Data on the BN object covering the CO, 13 CO, and H 2 vibrational bands and the H II lines are presented as an illustration of these techniques.


1995 ◽  
Vol 149 ◽  
pp. 160-164 ◽  
Author(s):  
M. Marcelin ◽  
Y.M. Georgelin ◽  
P. Amram ◽  
Y.P. Georgelin ◽  
E. le Coarer

AbstractAn Hα Survey of the Milky Way is being led at La Silla with a small telescope equipped with a scanning Fabry-Perot interferometer and IPCS. This Survey gives detailed Hα maps with a 9” spatial resolution and radial velocity maps with a 5km/s resolution. About 200 fields (38’×38’) have been already observed along the galactic plane. They furnish mosaics ranging from galactic longitude 234° to 350°. Combined with distances of exciting stars and radio data our kinematic data of the ionized gas enable to draw precisely the spiral arms of our Galaxy. Examples of the results obtained are given for galactic longitudes 234°, 283°, 290°, 298°, 328° and 338°.


1987 ◽  
Vol 115 ◽  
pp. 614-620
Author(s):  
N. Nakai ◽  
M. Hayashi ◽  
T. Hasegawa ◽  
Y. Sofue ◽  
T. Handa ◽  
...  

The CO (J=1-0) emission in M82 has been mapped with the Nobeyama 45-m telescope. The CO intensity distribution in the central region is resolved into two peaks. An axisymmetric model reveals a ring structure of molecular gas at a distance of 80-400 pc (centered near 200 pc) from the nucleus. This “200-pc ring” corresponds to just the region of a star formation burst. The molecular gas in M82 is also expanding out of the galactic plane with a velocity of 100-500 km s−1. The expansion energy of (0.1-1.4) x 1056 erg can be explained by the energy supply of supernovae in the central region.


2019 ◽  
Vol 631 ◽  
pp. A91 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
F. Combes ◽  
J. Chisholm ◽  
V. Patrício ◽  
...  

We compare the molecular and ionized gas kinematics of two strongly lensed galaxies at z ∼ 1 that lie on the main sequence at this redshift. The observations were made with ALMA and MUSE, respectively. We derive the CO and [O II] rotation curves and dispersion profiles of these two galaxies. We find a difference between the observed molecular and ionized gas rotation curves for one of the two galaxies, the Cosmic Snake, for which we obtain a spatial resolution of a few hundred parsec along the major axis. The rotation curve of the molecular gas is steeper than the rotation curve of the ionized gas. In the second galaxy, A521, the molecular and ionized gas rotation curves are consistent, but the spatial resolution is only a few kiloparsec on the major axis. Using simulations, we investigate the effect of the thickness of the gas disk and effective radius on the observed rotation curves and find that a more extended and thicker disk smoothens the curve. We also find that the presence of a strongly inclined (> 70°) thick disk (> 1 kpc) can smoothen the rotation curve because it degrades the spatial resolution along the line of sight. By building a model using a stellar disk and two gas disks, we reproduce the rotation curves of the Cosmic Snake with a molecular gas disk that is more massive and more radially and vertically concentrated than the ionized gas disk. Finally, we also obtain an intrinsic velocity dispersion in the Cosmic Snake of 18.5 ± 7 km s−1 and 19.5 ± 6 km s−1 for the molecular and ionized gas, respectively, which is consistent with a molecular disk with a smaller and thinner disk. For A521, the intrinsic velocity dispersion values are 11 ± 8 km s−1 and 54 ± 11 km s−1, with a higher value for the ionized gas. This could indicate that the ionized gas disk is thicker and more turbulent in this galaxy. These results highlight the diversity of the kinematics of galaxies at z ∼ 1 and the different spatial distribution of the molecular and ionized gas disks. It suggests the presence of thick ionized gas disks at this epoch and that the formation of the molecular gas is limited to the midplane and center of the galaxy in some objects.


1995 ◽  
Vol 149 ◽  
pp. 254-256
Author(s):  
F. Durret ◽  
E. Pécontal ◽  
P. Petitjean ◽  
J. Bergeron

Three quasars, Ton 616, 4C 37.43 and PKS 2251+113 (Stockton and MacKenty 1987) were observed in 1992 at the 3.6 m CFH telescope with the Integral Field Spectrograph TIGER (Courtès et al. 1987, Pécontal 1991) under subarcsecond seeing (0.5 - 0.7”). The spatial sampling was 0.39” in a field 7 by 7 ”, and the spectral resolution 8 ÅFWHM in the Hβ - [OIII]λ 5007 wavelength region (in the rest frame of the objects). The scaling is 4.5, 5.9 and 5.3 kpc.arcsec−1 for Ton 616, 4C 37.43 and PKS 2251+113 respectively (H0 = 75 km.s−1.Mpc−1). The data were reduced with the software developed at Observatoire de Lyon by Rousset, Bacon and Pécontal (Rousset 1992). A detailed account of our results is reported in Durret et al. 1994.


Sign in / Sign up

Export Citation Format

Share Document