scholarly journals Galaxy formation hydrodynamics: From cosmic flows to star-forming clouds

2010 ◽  
Vol 6 (S270) ◽  
pp. 491-498 ◽  
Author(s):  
Frédéric Bournaud

AbstractMajor progress has been made over the last few years in understanding hydrodynamical processes on cosmological scales, in particular how galaxies get their baryons. There is increasing recognition that a large part of the baryons accrete smoothly onto galaxies, and that internal evolution processes play a major role in shaping galaxies – mergers are not necessarily the dominant process. However, predictions from the various assembly mechanisms are still in large disagreement with the observed properties of galaxies in the nearby Universe. Small-scale processes have a major impact on the global evolution of galaxies over a Hubble time and the usual sub-grid models account for them in a far too uncertain way. Understanding when, where and at which rate galaxies formed their stars becomes crucial to understand the formation of galaxy populations. I discuss recent improvements and current limitations in “resolved” modeling of star formation, aiming at explicitly capturing star-forming instabilities, in cosmological and galaxy-sized simulations. Such models need to develop three-dimensional turbulence in the ISM, which requires parsec-scale resolution at redshift zero.

2006 ◽  
Vol 2 (S235) ◽  
pp. 139-139
Author(s):  
L. Sodré ◽  
A. Mateus ◽  
R. Cid Fernandes ◽  
G. Stasińska ◽  
W. Schoenell ◽  
...  

AbstractWe revisit the bimodality of the galaxy population seen in the local universe. We address this issue in terms of physical properties of galaxies, such as mean stellar ages and stellar masses, derived from the application of a spectral synthesis method to galaxy spectra from the SDSS. We show that the mean light-weighted stellar age of galaxies presents the best description of the bimodality seen in the galaxy population. The stellar mass has an additional role since most of the star-forming galaxies present in the local universe are low-mass galaxies. Our results give support to the existence of a ‘downsizing’ in galaxy formation, where nowadays massive galaxies tend to have stellar populations older than those found in less massive objects.


2020 ◽  
Vol 644 ◽  
pp. A144
Author(s):  
D. Donevski ◽  
A. Lapi ◽  
K. Małek ◽  
D. Liu ◽  
C. Gómez-Guijarro ◽  
...  

The dust-to-stellar mass ratio (Mdust/M⋆) is a crucial, albeit poorly constrained, parameter for improving our understanding of the complex physical processes involved in the production of dust, metals, and stars in galaxy evolution. In this work, we explore trends of Mdust/M⋆ with different physical parameters and using observations of 300 massive dusty star-forming galaxies detected with ALMA up to z ≈ 5. Additionally, we interpret our findings with different models of dusty galaxy formation. We find that Mdust/M⋆ evolves with redshift, stellar mass, specific star formation rates, and integrated dust size, but that evolution is different for main-sequence galaxies than it is for starburst galaxies. In both galaxy populations, Mdust/M⋆ increases until z ∼ 2, followed by a roughly flat trend towards higher redshifts, suggesting efficient dust growth in the distant universe. We confirm that the inverse relation between Mdust/M⋆ and M⋆ holds up to z ≈ 5 and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that the Mdust/M⋆ in starbursts reflects the increase in molecular gas fraction with redshift and attains the highest values for sources with the most compact dusty star formation. State-of-the-art cosmological simulations that include self-consistent dust growth have the capacity to broadly reproduce the evolution of Mdust/M⋆ in main-sequence galaxies, but underestimating it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust-growth timescales relative to observations. The results of phenomenological models based on the main-sequence and starburst dichotomy as well as analytical models that include recipes for rapid metal enrichment are consistent with our observations. Therefore, our results strongly suggest that high Mdust/M⋆ is due to rapid dust grain growth in the metal-enriched interstellar medium. This work highlights the multi-fold benefits of using Mdust/M⋆ as a diagnostic tool for: (1) disentangling main-sequence and starburst galaxies up to z ∼ 5; (2) probing the evolutionary phase of massive objects; and (3) refining the treatment of the dust life cycle in simulations.


2014 ◽  
Vol 10 (S309) ◽  
pp. 287-288
Author(s):  
Minju Lee ◽  
Kenta Suzuki ◽  
Kotaro Kohno ◽  
Yoichi Tamura ◽  
Daisuke Iono ◽  
...  

AbstractWe present recent results on Karl Jansky Very Large Array (JVLA) deep S-band (2-4 GHz) observation towards a protocluster 4C23.56 at redshift z ∼ 2.5. The protocluster 4C23.56 is known to have a significant over density (∼ 5 times) of star-burst galaxies selected to be Hα line-bright by a Subaru narrow band imaging. Now we have found 25 HAEs associated with the protocluster. These starburst HAEs are likely to become massive ellipticals at z = 0 in a cluster. Various other galaxy populations also reside in this field and the fact makes the field very unique as a tool to understand galaxy formation in a over dense region. Subsequent deep 1100-μm continuum surveys by the ASTE 10-m dish have discovered that several submillimeter bright galaxies (SMGs) coincide with HAEs, suggesting HAEs undergoing dusty starbursts. As star formation rates (SFRs) of HAEs might have been underestimated, we use radio being resistant to dust extinction. We investigate the correlation between SFR1.4 GHz and SFRHα for radio index α = 0.8 to see if the correlation holds for the sources and to check the number of dusty star forming galaxies. Our final results will allow us to evaluate quantitatively how the galaxy formation channel may be different under the condition of over-densities.


Author(s):  
Mattia Negrello ◽  
Matteo Bonato ◽  
Zhen-Yi Cai ◽  
Helmut Dannerbauer ◽  
Gianfranco De Zotti ◽  
...  

Abstract We illustrate the extraordinary discovery potential for extragalactic astrophysics of a far-infrared/submillimetre (far-IR/submm) all-sky spectroscopic survey with a 3-m-class space telescope. Spectroscopy provides a three-dimensional view of the Universe and allows us to take full advantage of the sensitivity of present-day instrumentation, close to fundamental limits, overcoming the spatial confusion that affects broadband far-IR/submm surveys. A space telescope of the 3-m class (which has already been described in recent papers) will detect emission lines powered by star formation in galaxies out to $z\,{\simeq}\,8$ . It will specifically provide measurements of spectroscopic redshifts, star-formation rates (SFRs), dust masses, and metal content for millions of galaxies at the peak epoch of cosmic star formation and of hundreds of them at the epoch of reionisation. Many of these star-forming galaxies will be strongly lensed; the brightness amplification and stretching of their sizes will make it possible to investigate (by means of follow-up observations with high-resolution instruments like ALMA, JWST, and SKA) their internal structure and dynamics on the scales of giant molecular clouds (40–100 pc). This will provide direct information on the physics driving the evolution of star-forming galaxies. Furthermore, the arcmin resolution of the telescope at submm wavelengths is ideal for detecting the cores of galaxy proto-clusters, out to the epoch of reionisation. Due to the integrated emission of member galaxies, such objects (as well as strongly lensed sources) will dominate at the highest apparent far-IR luminosities. Tens of millions of these galaxy-clusters-in-formation will be detected at $z \simeq 2 - 3$ –3, with a tail extending out to $z\,{\simeq}\,7$ , and thousands of detections at $6\,{<}\,z\,{<}\,7$ . Their study will allow us to track the growth of the most massive halos well beyond what is possible with classical cluster surveys (mostly limited to $z\,\lesssim\, 1.5 - 2$ –2), tracing the history of star formation in dense environments and teaching us how star formation and galaxy-cluster formation are related across all epochs. The obscured cosmic SFR density of the Universe will thereby be constrained. Such a survey will overcome the current lack of spectroscopic redshifts of dusty star-forming galaxies and galaxy proto-clusters, representing a quantum leap in far-IR/submm extragalactic astrophysics.


2019 ◽  
Vol 630 ◽  
pp. A69
Author(s):  
Mika Saajasto ◽  
Jorma Harju ◽  
Mika Juvela ◽  
Liu Tie ◽  
Qizhou Zhang ◽  
...  

Context. We present molecular line and dust continuum observations of a Planck-detected cold cloud, G074.11+00.11. The cloud consists of a system of curved filaments and a central star-forming clump. The clump is associated with several infrared sources and H2O maser emission. Aims. We aim to determine the mass distribution and gas dynamics within the clump to investigate if the filamentary structure seen around the clump repeats itself on a smaller scale, and to estimate the fractions of mass contained in dense cores and filaments. The velocity distribution of pristine dense gas can be used to investigate the global dynamical state of the clump, the role of filamentary inflows, filament fragmentation, and core accretion. Methods. We used molecular line and continuum observations from single dish observatories and interferometric facilities to study the kinematics of the region. Results. The molecular line observations show that the central clump may have formed as a result of a large-scale filament collision. The central clump contains three compact cores. Assuming a distance of 2.3 kpc, based on Gaia observations and a three-dimensional extinction method of background stars, the mass of the central clump exceeds 700 M⊙, which is roughly ~25% of the total mass of the cloud. Our virial analysis suggests that the central clump and all identified substructures are collapsing. We find no evidence for small-scale filaments associated with the cores. Conclusions. Our observations indicate that the clump is fragmented into three cores with masses in the range [10, 50] M⊙ and that all three are collapsing. The presence of an H2O maser emission suggests active star formation. However, the CO lines show only weak signs of outflows. We suggest that the region is young and any processes leading to star formation have just recently begun.


2020 ◽  
Vol 496 (4) ◽  
pp. 5463-5481
Author(s):  
Mehmet Alpaslan ◽  
Jeremy L Tinker

ABSTRACT The total luminosity of satellite galaxies around a central galaxy, Lsat, is a powerful metric for probing dark matter haloes. We utilize data from the Sloan Digital Sky Survey and DESI Legacy Imaging Surveys to explore the relationship between Lsat and galaxy properties for a sample of 117 966 central galaxies with z ≤ 0.15. At fixed stellar mass, we find that every galaxy property we explore correlates with Lsat, suggesting that dark matter haloes can influence them. We quantify these correlations by computing the mutual information between Lsat and secondary properties and explore how this varies as a function of stellar mass and star-formation activity. We find that absolute r-band magnitude correlates more strongly with Lsat than stellar mass across all galaxy populations; and that effective radius, velocity dispersion, and Sérsic index do so as well for star-forming and quiescent galaxies. Lsat is influenced by the mass of the host halo as well as the halo formation history, with younger haloes having higher Lsat. Lsat cannot distinguish between these two effects, but measurements of galaxy large-scale environment can break this degeneracy. For star-forming centrals, Reff, σv, and Sérsic index all correlate with large-scale density, implying that the halo age affects these properties. For quiescent galaxies, all secondary properties are independent of environment, implying that correlations with Lsat are driven only by halo mass. These results are a significant step forward in quantifying the extent of the galaxy–halo connection, and present a new test of galaxy formation models.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2020 ◽  
Vol 501 (2) ◽  
pp. 1591-1602
Author(s):  
T Parsotan ◽  
R K Cochrane ◽  
C C Hayward ◽  
D Anglés-Alcázar ◽  
R Feldmann ◽  
...  

ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.


2020 ◽  
Vol 500 (3) ◽  
pp. 3394-3412
Author(s):  
Steven R Furlanetto

ABSTRACT In recent years, simple models of galaxy formation have been shown to provide reasonably good matches to available data on high-redshift luminosity functions. However, these prescriptions are primarily phenomenological, with only crude connections to the physics of galaxy evolution. Here, we introduce a set of galaxy models that are based on a simple physical framework but incorporate more sophisticated models of feedback, star formation, and other processes. We apply these models to the high-redshift regime, showing that most of the generic predictions of the simplest models remain valid. In particular, the stellar mass–halo mass relation depends almost entirely on the physics of feedback (and is thus independent of the details of small-scale star formation) and the specific star formation rate is a simple multiple of the cosmological accretion rate. We also show that, in contrast, the galaxy’s gas mass is sensitive to the physics of star formation, although the inclusion of feedback-driven star formation laws significantly changes the naive expectations. While these models are far from detailed enough to describe every aspect of galaxy formation, they inform our understanding of galaxy formation by illustrating several generic aspects of that process, and they provide a physically grounded basis for extrapolating predictions to faint galaxies and high redshifts currently out of reach of observations. If observations show violations from these simple trends, they would indicate new physics occurring inside the earliest generations of galaxies.


Sign in / Sign up

Export Citation Format

Share Document