scholarly journals The Turbulent ISM of Galaxies 10 Gyrs ago: Star Formation, Gas Accretion, and IMF

2010 ◽  
Vol 6 (S277) ◽  
pp. 150-153
Author(s):  
Loïc Le Tiran ◽  
Matthew D. Lehnert

AbstractThe utilization of integral-field spectroscopy has led us to a new understanding of the physical conditions in galaxies within the first few billion years after the Big Bang. In this proceedings, we analyze observations of ~50 massive galaxies as seen as they were 10 Gyrs ago using SINFONI from the ESO-VLT. We show that the large line width they exhibit can be explained by the intense mechanical energy output from the young stars. We also study the influence of cold gas accretion upon these galaxies: We show that an unrealistic amount of shocked gas would be needed in order to explain the Hα emission from these galaxies through shocks from gas accretion with velocity about the Hα line widths of these galaxies. We also use DEEP2 photometric measurements for a sub-sample of 10 of these galaxies to evaluate their ratio of Hα to FUV flux as a function of their Hα and R-band luminosity surface brightnesses. Our data suggests that perhaps their initial mass function (IMF) is flatter than Salpeter at the high mass end, as has been suggested recently for some local galaxies. It may be that high turbulence is responsible for skewing the IMF towards more massive stars as suggested by some theories of star-formation. Much work is however needed to accredit this hypothesis.

Author(s):  
Yasuo Fukui ◽  
Tsuyoshi Inoue ◽  
Takahiro Hayakawa ◽  
Kazufumi Torii

Abstract A supersonic cloud–cloud collision produces a shock-compressed layer which leads to formation of high-mass stars via gravitational instability. We carried out a detailed analysis of the layer by using the numerical simulations of magneto-hydrodynamics which deal with colliding molecular flows at a relative velocity of 20 km s−1 (Inoue & Fukui 2013, ApJ, 774, L31). Maximum density in the layer increases from 1000 cm−3 to more than 105 cm−3 within 0.3 Myr by compression, and the turbulence and the magnetic field in the layer are amplified by a factor of ∼5, increasing the mass accretion rate by two orders of magnitude to more than 10−4 $ M_{\odot } $ yr−1. The layer becomes highly filamentary due to gas flows along the magnetic field lines, and dense cores are formed in the filaments. The massive dense cores have size and mass of 0.03–0.08 pc and 8–$ 50\, M_{\odot } $ and they are usually gravitationally unstable. The mass function of the dense cores is significantly top-heavy as compared with the universal initial mass function, indicating that the cloud–cloud collision preferentially triggers the formation of O and early B stars. We argue that the cloud–cloud collision is a versatile mechanism which creates a variety of stellar clusters from a single O star like RCW 120 and M 20 to tens of O stars of a super star cluster like RCW 38 and a mini-starburst W 43. The core mass function predicted by the present model is consistent with the massive dense cores obtained by recent ALMA observations in RCW 38 (Torii et al. 2021, PASJ, in press) and W 43 (Motte et al. 2018, Nature Astron., 2, 478). Considering the increasing evidence for collision-triggered high-mass star formation, we argue that cloud–cloud collision is a major mechanism of high-mass star formation.


1987 ◽  
Vol 117 ◽  
pp. 413-413
Author(s):  
Richard B. Larson

Current data on the luminosity function of nearby stars allow the possibility that the stellar initial mass function (IMF) is double-peaked and that the star formation rate (SFR) has decreased substantially with time. It is then possible to account for all of the unseen mass in the solar vicinity as stellar remnants. A model for the solar neighborhood has been constructed in which the IMF is bimodal, the SFR is constant for the low-mass mode and strongly decreasing for the high-mass mode, and the mass in remnants is equal to the column density of unseen matter; this model is found to be consistent with all of the available constraints on the evolution and stellar content of the solar neighborhood. In particular, the observed chemical evolution is satisfactorily reproduced without infall. The total SFR in the model decreases roughly with the 1.4 power of the gas content, which is more plausible than the nearly constant SFR required by models with a monotonic IMF.


2007 ◽  
Vol 3 (S246) ◽  
pp. 3-12
Author(s):  
Ralf S. Klessen ◽  
Paul C. Clark ◽  
Simon C. O. Glover

AbstractWe discuss results from numerical simulations of star cluster formation in the turbulent interstellar medium (ISM). The thermodynamic behavior of the star-forming gas plays a crucial role in fragmentation and determines the stellar mass function as well as the dynamic properties of the nascent stellar cluster. This holds for star formation in molecular clouds in the solar neighborhood as well as for the formation of the very first stars in the early universe. The thermodynamic state of the ISM is a result of the balance between heating and cooling processes, which in turn are determined by atomic and molecular physics and by chemical abundances. Features in the effective equation of state of the gas, such as a transition from a cooling to a heating regime, define a characteristic mass scale for fragmentation and so set the peak of the initial mass function of stars (IMF). As it is based on fundamental physical quantities and constants, this is an attractive approach to explain the apparent universality of the IMF in the solar neighborhood as well as the transition from purely primordial high-mass star formation to the more normal low-mass mode observed today.


2019 ◽  
Vol 491 (3) ◽  
pp. 4509-4522 ◽  
Author(s):  
Kirk S S Barrow

ABSTRACT Using cosmological simulations to make useful, scientifically relevant emission line predictions is a relatively new and rapidly evolving field. However, nebular emission lines have been particularly challenging to model because they are extremely sensitive to the local photoionization balance, which can be driven by a spatially dispersed distribution of stars amidst an inhomogeneous absorbing medium of dust and gas. As such, several unmodelled mysteries in observed emission line patterns exist in the literature. For example, there is some question as to why He ii λ4686/H β ratios in observations of lower metallicity dwarf galaxies tend to be higher than model predictions. Since hydrodynamic cosmological simulations are best suited to this mass and metallicity regime, this question presents a good test case for the development of a robust emission line modelling pipeline. The pipeline described in this work can model a process that produces high He ii λ4686/H β ratios and eliminate some of the modelling discrepancy for ratios below 3 per cent without including AGNs, X-ray binaries, high mass binaries, or a top-heavy stellar initial mass function. These ratios are found to be more sensitive to the presence of 15 Myr or longer gaps in the star formation histories than to extraordinary ionization parameters or specific star formation rates. They also closely correspond to the WR phase of massive stars. In addition to the investigation into He ii λ4686/H β ratios, this work charts a general path forward for the next generation of nebular emission line modelling studies.


2009 ◽  
Vol 706 (2) ◽  
pp. 1527-1544 ◽  
Author(s):  
A. Boselli ◽  
S. Boissier ◽  
L. Cortese ◽  
V. Buat ◽  
T. M. Hughes ◽  
...  

2019 ◽  
Vol 628 ◽  
pp. A110 ◽  
Author(s):  
F. Massi ◽  
A. Weiss ◽  
D. Elia ◽  
T. Csengeri ◽  
E. Schisano ◽  
...  

Context. The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims. We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods. We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size ~19′′2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 M⊙. Results. We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1–6 pc is also found, hinting at fractionation of magnetised, turbulent gas.


2013 ◽  
Vol 9 (S303) ◽  
pp. 211-219
Author(s):  
Jessica R. Lu ◽  
Andrea M. Ghez ◽  
Mark R. Morris ◽  
Will Clarkson ◽  
Andrea Stolte ◽  
...  

AbstractThe central parsec of our Galaxy hosts not only a supermassive black hole, but also a large population of young stars (age <6 Myr) whose presence is puzzling given how inhospitable the region is for star formation. The strong tidal forces require gas densities many orders of magnitude higher than is found in typical molecular clouds. Kinematic observations of this young nuclear cluster show complex structures, including a well-defined inner disk, but also a substantial off-disk population. Spectroscopic and photometric measurements indicate the initial mass function (IMF) differs significantly from the canonical IMF found in the solar neighborhood. These observations have led to a number of proposed star formation scenarios, such as an infalling massive star cluster, a single infalling molecular cloud, or cloud-cloud collisions. I will review recent works on the young stars in the central parsec and discuss connections with young nuclear star clusters in other galaxies, such as M31, and with star formation in the larger central molecular zone.


2021 ◽  
Vol 502 (4) ◽  
pp. 5417-5437
Author(s):  
Matthew C Smith

ABSTRACT Galaxy formation simulations frequently use initial mass function (IMF) averaged feedback prescriptions, where star particles are assumed to represent single stellar populations that fully sample the IMF. This approximation breaks down at high mass resolution, where stochastic variations in stellar populations become important. We discuss various schemes to populate star particles with stellar masses explicitly sampled from the IMF. We use Monte Carlo numerical experiments to examine the ability of the schemes to reproduce an input IMF in an unbiased manner while conserving mass. We present our preferred scheme which can easily be added to pre-existing star formation prescriptions. We then carry out a series of high-resolution isolated simulations of dwarf galaxies with supernovae (SNe), photoionization, and photoelectric heating to compare the differences between using IMF averaged feedback and explicitly sampling the IMF. We find that if SNe are the only form of feedback, triggering individual SNe from IMF averaged rates gives identical results to IMF sampling. However, we find that photoionization is more effective at regulating star formation when IMF averaged rates are used, creating more, smaller H ii regions than the rare, bright sources produced by IMF sampling. We note that the increased efficiency of the IMF averaged feedback versus IMF sampling is not necessarily a general trend and may be reversed depending on feedback channel, resolution and other details. However, IMF sampling is always the more physically motivated approach. We conservatively suggest that it should be used for star particles less massive than $\sim 500\, \mathrm{M_\odot }$.


2020 ◽  
Vol 642 ◽  
pp. A87 ◽  
Author(s):  
M. S. N. Kumar ◽  
P. Palmeirim ◽  
D. Arzoumanian ◽  
S. I. Inutsuka

Context. Star formation takes place in giant molecular clouds, resulting in mass-segregated young stellar clusters composed of Sun-like stars, brown dwarfs, and massive O-type(50–100 M⊙) stars. Aims. We aim to identify candidate hub-filament systems (HFSs) in the Milky Way and examine their role in the formation of the highest mass stars and star clusters. Methods. The Herschel survey HiGAL has catalogued about 105 clumps. Of these, approximately 35 000 targets are detected at the 3σ level in a minimum of four bands. Using the DisPerSE algorithm we detect filamentary skeletons on 10′ × 10′ cut-outs of the SPIRE 250 μm images (18′′ beam width) of the targets. Any filament with a total length of at least 55′′ (3 × 18′′) and at least 18′′ inside the clump was considered to form a junction at the clump. A hub is defined as a junction of three or more filaments. Column density maps were masked by the filament skeletons and averaged for HFS and non-HFS samples to compute the radial profile along the filaments into the clumps. Results. Approximately 3700 (11%) are candidate HFSs, of which about 2150 (60%) are pre-stellar and 1400 (40%) are proto-stellar. The filaments constituting the HFSs have a mean length of ~10–20 pc, a mass of ~5 × 104 M⊙, and line masses (M∕L) of ~2 × 103 M⊙ pc−1. All clumps with L > 104 L⊙ and L > 105 L⊙ at distances within 2 and 5 kpc respectively are located in the hubs of HFSs. The column densities of hubs are found to be enhanced by a factor of approximately two (pre-stellar sources) up to about ten (proto-stellar sources). Conclusions. All high-mass stars preferentially form in the density-enhanced hubs of HFSs. This amplification can drive the observed longitudinal flows along filaments providing further mass accretion. Radiation pressure and feedback can escape into the inter-filamentary voids. We propose a “filaments to clusters” unified paradigm for star formation, with the following salient features: (a) low-intermediate-mass stars form slowly (106 yr) in the filaments and massive stars form quickly (105 yr) in the hub, (b) the initial mass function is the sum of stars continuously created in the HFS with all massive stars formed in the hub, (c) feedback dissipation and mass segregation arise naturally due to HFS properties, and explain the (d) age spreads within bound clusters and the formation of isolated OB associations.


2009 ◽  
Vol 5 (S266) ◽  
pp. 417-420
Author(s):  
M. R. Haas ◽  
P. Anders

AbstractIf all stars form in clusters and both stars and clusters follow a power-law distribution which favours the creation of low-mass objects, the numerous low-mass clusters will be deficient in high-mass stars. Therefore, the stellar mass function integrated over the entire galaxy (the integrated galactic initial mass function; IGIMF) will be steeper at the high-mass end than the underlying stellar IMF. We show how the steepness of the IGIMF depends on the sampling method and on the assumptions made regarding the star cluster mass function. We also investigate the O-star content, integrated photometry and chemical enrichment of galaxies that result from several IGIMFs compared to more standard IMFs.


Sign in / Sign up

Export Citation Format

Share Document