scholarly journals A consolidated online database of Galactic planetary nebulae

2011 ◽  
Vol 7 (S283) ◽  
pp. 442-443
Author(s):  
Brent Miszalski ◽  
A. Acker ◽  
F. Ochsenbein ◽  
Q. A. Parker

AbstractSince the issue of the unifying Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (SECGPN) a large number of new discoveries have been made thanks to improved surveys and discovery techniques. The increasingly heterogeneous published population of Galactic PNe, that we have determined totals <2850 PNe, is becoming more difficult to study on the whole without a centralised repository. We introduce a consolidated and interactive online database with object classifications that reflect the latest multi-wavelength data and the most recent results. The extensible database, hosted by the Centre de Donnees astronomique de Strasbourg (CDS), will contain a wealth of observed data for large, well-defined samples of PNe including coordinates, multi-wavelength images, spectroscopy, line intensities, radial velocities and central star information. It is anticipated that the database will be publicly released early 2012.

1998 ◽  
Vol 11 (1) ◽  
pp. 363-363
Author(s):  
Johanna Jurcsik ◽  
Benjamin Montesinos

FG Sagittae is one of the most important key objects of post-AGB stellar evolutionary studies. As a consequence of a final helium shell flash, this unique variable has shown real evolutionary changes on human time scales during this century. The observational history was reviewed in comparison with predictions from evolutionary models. The central star of the old planetary nebula (Hel-5) evolved from left to right in the HR diagram, going in just hundred years from the hot region of exciting sources of planetary nebulae to the cool red supergiant domain just before our eyes becoming a newly-born post-AGB star. The effective temperature of the star was around 50,000 K at the beginning of this century, and the last estimates in the late 1980s give 5,000-6,500 K. Recent spectroscopic observations obtained by Ingemar Lundström show definite changes in the nebular line intensities. This fact undoubtedly rules out the possibility that, instead of FG Sge, a hidden hot object would be the true central star of the nebula. Consequently, the observed evolutionary changes are connected with the evolution of a single star.


2016 ◽  
Vol 12 (S323) ◽  
pp. 104-108
Author(s):  
Rodolfo Montez

AbstractX-ray emission from planetary nebulae (PNe) provides unique insight on the formation and evolution of PNe. Past observations and the ongoing Chandra Planetary Nebulae Survey (ChanPlaNS) provide a consensus on the two types of X-ray emission detected from PNe: extended and compact point-like sources. Extended X-ray emission arises from a shocked “hot bubble” plasma that resides within the nebular shell. Cooler than expected hot bubble plasma temperatures spurred a number of potential solutions with one emerging as the likely dominate process. The origin of X-ray emission from compact sources at the location of the central star is less clear. These sources might arise from one or combinations of the following processes: self-shocking stellar winds, spun-up binary companions, and/or accretion, perhaps from mass transfer, PN fallback, or debris disks. In the discovery phase, X-ray studies of PNe have mainly focused on the origin of the various emission processes. New directions incorporate multi-wavelength observations to study the influence of X-ray emission on the rest of the electromagnetic spectrum.


2019 ◽  
Vol 489 (2) ◽  
pp. 2195-2203 ◽  
Author(s):  
David Jones ◽  
Ondřej Pejcha ◽  
Romano L M Corradi

ABSTRACT Recent studies have indicated that triple-star systems may play a role in the formation of an appreciable number of planetary nebulae, however, only one triple central star is known to date (and that system is likely too wide to have had much influence on the evolution of its component stars). Here, we consider the possibility that Sh 2-71 was formed by a triple system that has since broken apart. We present the discovery of two regions of emission, seemingly aligned with the proposed tertiary orbit (i.e. in line with the axis formed by the two candidate central star systems previously considered in the literature). We also perform a few simple tests of the plausibility of the triple hypothesis based on the observed properties (coordinates, radial velocities, distances, and proper motions) of the stars observed close to the projected centre of the nebula, adding further support through numerical integrations of binary orbits responding to mass loss. Although a number of open questions remain, we conclude that Sh 2-71 is currently one of the best candidates for planetary nebula formation influenced by triple-star interactions.


1989 ◽  
Vol 131 ◽  
pp. 335-350 ◽  
Author(s):  
H. C. Ford ◽  
R. Ciardullo ◽  
G. H. Jacoby ◽  
X. Hui

Planetary nebulae can be used to estimate the distances to galaxies and to measure stellar dynamics in faint halos. We discuss surveys which have netted a total of 665 candidate planetary nebulae in NGC 5128 (Cen A), NGC 5102, NGC 3031 (M81), NGC 3115, three galaxies in the Leo Group (NGC 3379, NGC 3384, NGC 3377), NGC 5866, and finally, in NGC 4486 (M87). Radial velocities of planetaries in M32 have shown that its halo velocity dispersion is most likely isotropic. Radial velocities of planetaries in M31 show that ∼ 2/3 of the nebulae with projected radii between 15 and 30 kpc are members of a rotating thick disk with slight asymmetric drift, while ∼ 1/3 belong to a slowly rotating halo. Velocities of 116 nebulae in NGC 5128 reveal pronounced rotation and a slowly declining velocity dispersion in the halo out to 20 kpc. The [O III] λ5007 luminosity functions (PNLFs) in NGC 5128, M81, and the three Leo Galaxies have the same shape over the first magnitude. The highly consistent distances derived from the brightnesses of the jth nebula and the median nebula in different fields in the same galaxy and from different galaxies in the same group lend strong support to the suggestion that planetaries are an accurate standard candle in old stellar populations. Comparison of theoretical luminosity functions to the observed PNLFs shows that there is a very small dispersion in the central star masses.


1976 ◽  
Vol 32 ◽  
pp. 343-349
Author(s):  
Yu.V. Glagolevsky ◽  
K.I. Kozlova ◽  
V.S. Lebedev ◽  
N.S. Polosukhina

SummaryThe magnetic variable star 21 Per has been studied from 4 and 8 Å/mm spectra obtained with the 2.6 - meter reflector of the Crimean Astrophysical Observatory. Spectral line intensities (Wλ) and radial velocities (Vr) have been measured.


1993 ◽  
Vol 155 ◽  
pp. 480-480
Author(s):  
C.Y. Zhang ◽  
S. Kwok

Making use of the results from recent infrared and radio surveys of planetary nebulae, we have selected 431 nebulae to form a sample where a number of distance-independent parameters (e.g., Tb, Td, I60μm and IRE) can be constructed. In addition, we also made use of other distance-independent parameters ne and T∗ where recent measurements are available. We have investigated the relationships among these parameters in the context of a coupled evolution model of the nebula and the central star. We find that most of the observed data in fact lie within the area covered by the model tracks, therefore lending strong support to the correctness of the model. Most interestingly, we find that the evolutionary tracks for nebulae with central stars of different core masses can be separated in a Tb-T∗ plane. This implies that the core masses and ages of the central stars can be determined completely independent of distance assumptions. The core masses and ages have been obtained for 302 central stars with previously determined central-star temperatures. We find that the mass distribution of the central stars strongly peaks at 0.6 M⊙, with 66% of the sample having masses <0.64 MM⊙. The luminosities of the central stars are then derived from their positions in the HR diagram according to their core masses and central star temperatures. If this method of mass (and luminosity) determination turns out to be accurate, we can bypass the extremely unreliable estimates for distances, and will be able to derive other physical properties of planetary nebulae.


1993 ◽  
Vol 155 ◽  
pp. 572-572
Author(s):  
C.Y. Zhang

We have selected a sample of planetary nebulae, for which the core masses are determined using distance-independent parameters (Zhang and Kwok 1992). The chemical abundances of He, N, O, and C are taken from the literature for them. Relationships of the ratios of He/H, N/O, and C/O with various stellar parameters of planetary nebulae (PN), such as the core mass, the mass of the core plus the ionized nebular gas, the stellar age and temperature, are examined. It is found that the N/O increases with increasing mass, while the C/O first increases and then decreases with the core mass. No strong correlation seems to exist between the He/H and the core mass. A correlation of the N/O and He/H with the stellar temperature exists. The current dredge-up theory for the progenitor AGB stars cannot satisfactorily account for these patterns of chemical enrichment in PN. Furthermore, the correlations of the N/O and He/H with the stellar age and temperature indicate that besides the dredge-ups in the RG and AGB stages, physical processes that happen in the planetary nebula stage may also play a role in forming the observed patterns of chemical enrichment in the planetary nebulae.


2016 ◽  
Vol 12 (S323) ◽  
pp. 352-353
Author(s):  
J. A. López ◽  
M. G. Richer ◽  
M. Pereyra ◽  
M. T. García-Díaz

AbstractBulk outflow or global expansion velocities are presented for a large number of planetary nebulae (PNe) that span a wide range of evolutionary stages and different stellar populations. The sample comprises 133 PNe from the Galactic bulge, 100 mature and highly evolved PNe from the disk, 11 PNe from the Galactic halo and 15 PNe with very low central star masses and low metallicities, for a total of 259 PNe. These results reveal from a statistical perspective the kinematic evolution of the expansion velocities of PNe in relation to changing characteristics of the central star’s wind and ionizing luminosity and as a function of the evolutionary rate determined by the central (CS) mass. The large number of PNe utilized in this work for each group of PNe under study and the homogeneity of the data provide for the first time a solid benchmark form observations for model predictions, as has been described by López et al. (2016).


Author(s):  
Miriam Peña ◽  
Liliana Hernández-Martínez ◽  
Francisco Ruiz-Escobedo

Abstract The analysis of 20 years of spectrophotometric data of the double shell planetary nebula PM 1-188 is presented, aiming to determine the time evolution of the emission lines and the physical conditions of the nebula, as a consequence of the systematic fading of its [WC 10] central star whose brightness has declined by about 10 mag in the past 40 years. Our main results include that the [O iii], [O ii], [N ii] line intensities are increasing with time in the inner nebula as a consequence of an increase in electron temperature from 11 000 K in 2005 to more than 14 000 K in 2018, due to shocks. The intensity of the same lines are decreasing in the outer nebula, due to a decrease in temperature, from 13 000 K to 7000 K, in the same period. The chemical composition of the inner and outer shells was derived and they are similar. Both nebulae present subsolar O, S and Ar abundances, while they are He, N and Ne rich. For the outer nebula the values are 12+log He/H = 11.13 ± 0.05, 12+log O/H = 8.04 ± 0.04, 12+log N/H = 7.87 ± 0.06, 12+log S/H = 7.18 ± 0.10 and 12+log Ar = 5.33 ± 0.16. The O, S and Ar abundances are several times lower than the average values found in disc non-Type I PNe, and are reminiscent of some halo PNe. From high resolution spectra, an outflow in the N-S direction was found in the inner zone. Position-velocity diagrams show that the outflow expands at velocities in the −150 to 100 km s−1 range, and both shells have expansion velocities of about 40 km s−1.


1989 ◽  
Vol 131 ◽  
pp. 355-355 ◽  
Author(s):  
D. J. Monk ◽  
M. J. Barlow ◽  
R. E. S. Clegg

AAT and IUE spectra of thirteen medium-excitation Magellanic Cloud planetary nebulae have been used to derive H I Zanstra effective temperatures and surface gravities for the central stars.


Sign in / Sign up

Export Citation Format

Share Document