scholarly journals A 3D view of the planetary nebula NGC 40

2011 ◽  
Vol 7 (S283) ◽  
pp. 446-447
Author(s):  
Hektor Monteiro ◽  
Diego Falceta-Gonçalves

AbstractWe present the results of a study of the planetary nebula NGC 40 with the use of the 3-D photoionization code Mocassin constrained by observational data of different types. The modeling process allows us to derive the three-dimensional nebular structure, physical and chemical characteristics and ionizing star parameters of the object by simultaneously fitting the integrated line intensities, the temperature map, density map, and the observed morphologies in different emission lines. For this particular case we combined hydrodynamical simulations with the photoionization scheme in order to obtain a self-consistent distribution of density and velocity of the nebular material. Finally, using theoretical evolutionary tracks of intermediate and low mass stars, we estimate the mass and age of the central star of NGC 40 as being 0.57 M⊙ and 5810 yr, respectively. The distance obtained from the fitting procedure was 1150 ± 170 pc.

2020 ◽  
Vol 498 (4) ◽  
pp. 6005-6012
Author(s):  
James Munday ◽  
David Jones ◽  
Jorge García-Rojas ◽  
Henri M J Boffin ◽  
Brent Miszalski ◽  
...  

ABSTRACT We present a detailed study of the binary central star of the planetary nebula ETHOS 1 (PN G068.1+11.0). Simultaneous modelling of light and radial velocity curves reveals the binary to comprise a hot and massive pre-white dwarf with an M-type main-sequence companion. A good fit to the observations was found with a companion that follows expected mass–temperature–radius relationships for low-mass stars, indicating that despite being highly irradiated, it is consistent with not being significantly hotter or larger than a typical star of the same mass. Previous modelling indicated that ETHOS 1 may comprise the first case where the orbital plane of the central binary does not lie perpendicular to the nebular symmetry axis, at odds with the expectation that the common envelope is ejected in the orbital plane. We find no evidence for such a discrepancy, deriving a binary inclination in agreement with that of the nebula as determined by spatio-kinematic modelling. This makes ETHOS 1 the ninth post-common-envelope planetary nebula in which the binary orbital and nebular symmetry axes have been shown to be aligned, with as yet no known counter-examples. The probability of finding such a correlation by chance is now less than 0.000 02 per cent.


2020 ◽  
Vol 494 (2) ◽  
pp. 2851-2860 ◽  
Author(s):  
Sunmyon Chon ◽  
Kazuyuki Omukai

ABSTRACT Direct collapse black hole (DCBH) formation with mass ≳105 M⊙ is a promising scenario for the origin of high-redshift supermassive black holes. It has usually been supposed that the DCBH can only form in the primordial gas since the metal enrichment enhances the cooling ability and causes the fragmentation into smaller pieces. What actually happens in such an environment, however, has not been explored in detail. Here, we study the impact of the metal enrichment on the clouds, conducting hydrodynamical simulations to follow the cloud evolution in cases with different degree of the metal enrichment Z/Z⊙ = 10−6 to 10−3. Below Z/Z⊙ = 10−6, metallicity has no effect and supermassive stars form along with a small number of low-mass stars. With more metallicity $Z/\mathrm{ Z}_{\odot } \gtrsim5 \times 10^{-6}$, although the dust cooling indeed promotes fragmentation of the cloud core and produces about a few thousand low-mass stars, the accreting flow preferentially feeds the gas to the central massive stars, which grows supermassive as in the primordial case. We term this formation mode as the super competitive accretion, where only the central few stars grow supermassive while a large number of other stars are competing for the gas reservoir. Once the metallicity exceeds 10−3 Z⊙ and metal-line cooling becomes operative, the central star cannot grow supermassive due to lowered accretion rate. Supermassive star formation by the super competitive accretion opens up a new window for seed BHs, which relaxes the condition on metallicity and enhances the seed BH abundance.


1997 ◽  
Vol 180 ◽  
pp. 231-231
Author(s):  
R. Gruenwald ◽  
S. M. Viegas ◽  
D. Broguière

A three-dimensional (3D) self-consistent photoionization code is developed in order to build more realistic models for asymmetrical and/or inhomogeneous photoionized nebulae. With these models the assumption of spherical or plane-parallel symmetry can be dropped and models with various geometries can be treated. The gaseous region is divided into numberous cubic cells, and the physical conditions in each cell are obtained taking into account the effect of the other cells in the optical depth and their contribution into the diffuse radiation. A model for IC 4406, which is a typical example of bipolar planetary nebula is presented. The model assumes a torus of dense material around the central star, as suggested in the literature. Its presence is confirmed by the model, in particular by the shape of the theoretical Hα + [NII] isophotal map. The chemical abundances required to explain the observed line intensities indicate that the chemical properties of this bipolar nebula are not characteristic of type I planetaries. A detailed paper will be published in Ap.J. (FAPESP, CNPq)


1981 ◽  
Vol 59 ◽  
pp. 319-338
Author(s):  
Alvio Renzini

AbstractThe effects of mass loss on the evolution of low-mass stars (actual mass smaller than 1.4 Mʘ) are reviewed. The case of globular cluster stars is discussed in some detail, and it is shown that evolutionary theory sets quite precise limits to the mass-loss rate in population II red giants. The effects of mass loss on the final evolutionary stages of stars producing white dwarfs is also discussed. In particular, the interaction of the wind from the hot central star with the surrounding planetary nebula is considered. Finally, the problem of the origin of hydrogen-deficient stars is briefly discussed.


1998 ◽  
Vol 11 (1) ◽  
pp. 363-363
Author(s):  
Johanna Jurcsik ◽  
Benjamin Montesinos

FG Sagittae is one of the most important key objects of post-AGB stellar evolutionary studies. As a consequence of a final helium shell flash, this unique variable has shown real evolutionary changes on human time scales during this century. The observational history was reviewed in comparison with predictions from evolutionary models. The central star of the old planetary nebula (Hel-5) evolved from left to right in the HR diagram, going in just hundred years from the hot region of exciting sources of planetary nebulae to the cool red supergiant domain just before our eyes becoming a newly-born post-AGB star. The effective temperature of the star was around 50,000 K at the beginning of this century, and the last estimates in the late 1980s give 5,000-6,500 K. Recent spectroscopic observations obtained by Ingemar Lundström show definite changes in the nebular line intensities. This fact undoubtedly rules out the possibility that, instead of FG Sge, a hidden hot object would be the true central star of the nebula. Consequently, the observed evolutionary changes are connected with the evolution of a single star.


2020 ◽  
Vol 499 (1) ◽  
pp. 668-680
Author(s):  
Alejandro González-Samaniego ◽  
Enrique Vazquez-Semadeni

ABSTRACT We use two hydrodynamical simulations (with and without photoionizing feedback) of the self-consistent evolution of molecular clouds (MCs) undergoing global hierarchical collapse (GHC), to study the effect of the feedback on the structural and kinematic properties of the gas and the stellar clusters formed in the clouds. During this early stage, the evolution of the two simulations is very similar (implying that the feedback from low-mass stars does not affect the cloud-scale evolution significantly) and the star-forming region accretes faster than it can convert gas into stars, causing the instantaneous measured star formation efficiency (SFE) to remain low even in the absence of significant feedback. Afterwards, the ionizing feedback first destroys the filamentary supply to star-forming hubs and ultimately removes the gas from it, thus first reducing the star formation (SF) and finally halting it. The ionizing feedback also affects the initial kinematics and spatial distribution of the forming stars because the gas being dispersed continues to form stars, which inherit its motion. In the non-feedback simulation, the groups remain highly compact and do not mix, while in the run with feedback, the gas dispersal causes each group to expand, and the cluster expansion thus consists of the combined expansion of the groups. Most secondary star-forming sites around the main hub are also present in the non-feedback run, implying a primordial rather than triggered nature. We do find one example of a peripheral star-forming site that appears only in the feedback run, thus having a triggered origin. However, this appears to be the exception rather than the rule, although this may be an artefact of our simplified radiative transfer scheme.


Author(s):  
Miriam Peña ◽  
Liliana Hernández-Martínez ◽  
Francisco Ruiz-Escobedo

Abstract The analysis of 20 years of spectrophotometric data of the double shell planetary nebula PM 1-188 is presented, aiming to determine the time evolution of the emission lines and the physical conditions of the nebula, as a consequence of the systematic fading of its [WC 10] central star whose brightness has declined by about 10 mag in the past 40 years. Our main results include that the [O iii], [O ii], [N ii] line intensities are increasing with time in the inner nebula as a consequence of an increase in electron temperature from 11 000 K in 2005 to more than 14 000 K in 2018, due to shocks. The intensity of the same lines are decreasing in the outer nebula, due to a decrease in temperature, from 13 000 K to 7000 K, in the same period. The chemical composition of the inner and outer shells was derived and they are similar. Both nebulae present subsolar O, S and Ar abundances, while they are He, N and Ne rich. For the outer nebula the values are 12+log He/H = 11.13 ± 0.05, 12+log O/H = 8.04 ± 0.04, 12+log N/H = 7.87 ± 0.06, 12+log S/H = 7.18 ± 0.10 and 12+log Ar = 5.33 ± 0.16. The O, S and Ar abundances are several times lower than the average values found in disc non-Type I PNe, and are reminiscent of some halo PNe. From high resolution spectra, an outflow in the N-S direction was found in the inner zone. Position-velocity diagrams show that the outflow expands at velocities in the −150 to 100 km s−1 range, and both shells have expansion velocities of about 40 km s−1.


2011 ◽  
Vol 7 (S283) ◽  
pp. 448-449
Author(s):  
Hektor Monteiro ◽  
Denise Gonçalves ◽  
Marcelo Leal-Ferreira ◽  
Romano Corradi ◽  
Sebastian Sánchez

AbstractWe present optical integral field spectroscopy analysis of the main components, with the exception of the halo, as well as of the detected small-scale structures of the planetary nebulae NGC 3242. The observations were obtained with the VIMOS instrument attached to VLT-UT3. Spatially resolved maps of the electronic density (Ne), temperatures (Te) and chemical abundances, i.e., in a pixel to pixel fashion of the small and large-scales structures of this planetary nebula are determined in this work. These diagnostic and abundance maps represent important constraints for future detailed three dimensional photoionization modeling of the nebula, as well as providing important information on biases introduced by traditional slit observations.


2012 ◽  
Author(s):  
Stuart A. Heap ◽  
Richard J. Stancliffe ◽  
John C. Lattanzio ◽  
David S. P. Dearborn

2008 ◽  
Vol 4 (S258) ◽  
pp. 383-394 ◽  
Author(s):  
Pierre Demarque

AbstractA brief summary of the history of stellar evolution theory and the use of isochrones is given. The present state of the subject is summarized. The major uncertainties in isochrone construction are considered: chemical abundances and color calibrations, and the treatment of turbulent convection in stellar interior and atmosphere models. The treatment of convection affects the modeling of stellar interiors principally in two ways: convective core overshoot which increases evolutionary lifetimes, and the depth of convection zones which determines theoretical radii. Turbulence also modifies atmospheric structure and dynamics, and the derivation of stellar abundances. The symbiosis of seismic techniques with increasingly more realistic three-dimensional radiation hydrodynamics simulations is transforming the study of late-type stars. The important case of very low mass stars, which are fully convective, is briefly visited.


Sign in / Sign up

Export Citation Format

Share Document