scholarly journals Early Time Bolometric Light Curves of Type-II Supernovae Observed by Swift

2011 ◽  
Vol 7 (S279) ◽  
pp. 383-384
Author(s):  
T. A. Pritchard ◽  
P. W. A. Roming

AbstractWe present early time (~0-50 days) bolometric light curves of UV-bright Core Collapse Supernovae observed with the Swift UV/Optical Telescope. We also generate pseudo-bolometric light curves from Swift UV and optical data and examine these by subtype as well as the observed and interpolated UV and IR flux contributions by epoch and bolometric corrections at early times from UV data.

2020 ◽  
Vol 500 (4) ◽  
pp. 5639-5656
Author(s):  
P J Vallely ◽  
C S Kochanek ◽  
K Z Stanek ◽  
M Fausnaugh ◽  
B J Shappee

ABSTRACT We present observations from the Transiting Exoplanet Survey Satellite (TESS) of twenty bright core-collapse supernovae with peak TESS-band magnitudes ≲18 mag. We reduce this data with an implementation of the image subtraction pipeline used by the All-Sky Automated Survey for Supernovae (ASAS-SN) optimized for use with the TESS images. In empirical fits to the rising light curves, we do not find strong correlations between the fit parameters and the peak luminosity. Existing semi-analytic models fit the light curves of the Type II supernovae well, but do not yield reasonable estimates of the progenitor radius or explosion energy, likely because they are derived for use with ultraviolet observations while TESS observes in the near-infrared. If we instead fit the data with numerically simulated light curves, the rising light curves of the Type II supernovae are consistent with the explosions of red supergiants. While we do not identify shock breakout emission for any individual event, when we combine the fit residuals of the Type II supernovae in our sample, we do find a >5σ flux excess in the ∼1 d before the start of the light-curve rise. It is likely that this excess is due to shock breakout emission, and that during its extended mission TESS will observe a Type II supernova bright enough for this signal to be detected directly.


2019 ◽  
Vol 629 ◽  
pp. A17
Author(s):  
Luc Dessart ◽  
Edouard Audit

Core-collapse supernova (SN) ejecta are probably structured on both small and large scales, with greater deviations from spherical symmetry nearer the explosion site. Here, we present 2D and 3D gray radiation hydrodynamics simulations of type II SN light curves from red and blue supergiant star explosions to investigate the impact of inhomogeneities in density or composition on SN observables, with a characteristic scale set to a few percent of the local radius. Clumping is found to hasten the release of stored radiation, boosting the early time luminosity and shortening the photospheric phase. Around the photosphere, radiation leaks between the clumps where the photon mean free path is greater. Since radiation is stored uniformly in volume, a greater clumping can increase this leakage by storing more and more mass into smaller and denser clumps containing less and less radiation energy. An inhomogeneous medium in which different regions recombine at different temperatures can also impact the light curve. Clumping can thus be a source of diversity in SN brightness. Clumping may lead to a systematic underestimate of ejecta masses from light curve modeling, although a significant offset seems to require a large density contrast of a few tens between clumps and interclump medium.


2011 ◽  
Vol 7 (S279) ◽  
pp. 34-39 ◽  
Author(s):  
Iair Arcavi

AbstractWe present R-Band light curves of Type II supernovae (SNe) from the Caltech Core Collapse Program (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three distinct classes: plateau, slowly declining and rapidly declining events. The latter class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. We present also host galaxy trends from the Palomar Transien Factory (PTF) core collapse SN sample, which augment some of the photometric results.


2021 ◽  
Vol 922 (1) ◽  
pp. 55
Author(s):  
Emma R. Beasor ◽  
Ben Davies ◽  
Nathan Smith

Abstract Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 and 30M ⊙the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolution, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new M ̇ prescription calibrated to RSGs with initial masses between 10 and 25 M ⊙, which unlike previous prescriptions does not overestimate M ̇ for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass loss by recomputing the evolution of stars with masses 12–27 M ⊙ with the new M ̇ -prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30 M ⊙ to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.


2005 ◽  
Vol 192 ◽  
pp. 303-308
Author(s):  
A. Elmhamdi ◽  
N.N. Chugai ◽  
I.J. Danziger

SummaryWe analyze late-time observations, available photometry and spectra, of a sample of type II plateau supernovae (SNe IIP). The possibility of using Hα luminosity at the nebular epoch as a tracer of 56Ni mass in this class of objects is investigated, yielding a consistency with the photometry-based estimates within 20%. Interesting correlations are found and their impacts on our present understanding of the physics of core collapse SNe are discussed.


2019 ◽  
Vol 631 ◽  
pp. A8 ◽  
Author(s):  
Desmond John Hillier ◽  
Luc Dessart

Hydrogen-rich (Type II) supernovae (SNe) exhibit considerable photometric and spectroscopic diversity. Extending previous work that focused exclusively on photometry, we simultaneously model the multi-band light curves and optical spectra of Type II SNe using red supergiant (RSG) progenitors that are characterized by their H-rich envelope masses or the mass and extent of an enshrouding cocoon at the star’s surface. Reducing the H-rich envelope mass yields faster declining light curves, a shorter duration of the photospheric phase, and broader line profiles at early times. However, there is only a modest boost in early-time optical brightness. Increasing the mass of the circumstellar material (CSM) is more effective at boosting the early-time brightness and producing a fast-declining light curve while leaving the duration of the photospheric phase intact. It also makes the optical color bluer, delays the onset of recombination, and can severely reduce the speed of the fastest ejecta material. The early ejecta interaction with CSM is conducive to producing featureless spectra at 10−20 d and a weak or absent Hα absorption during the recombination phase. The slow decliners SNe 1999em, 2012aw, and 2004et can be explained with a 1.2 × 1051 erg explosion in a compact (∼600 R⊙) RSG star from a 15 M⊙ stellar evolution model. A small amount of CSM (<0.2 M⊙) improves the match to the SN photometry before 10 d. With more extended RSG progenitors, models predict lower ejecta kinetic energies, but the SN color stays blue for too long and the spectral line widths are too narrow. The fast decliners SNe 2013ej and 2014G may require 0.5−1.0 M⊙ of CSM, although this depends on the CSM structure. A larger boost to the luminosity (as needed for the fast decliners SNe 1979C or 1998S) requires interaction with a more spatially extended CSM, which might also be detached from the star.


Author(s):  
S Taubenberger ◽  
A Floers ◽  
C Vogl ◽  
M Kromer ◽  
J Spyromilio ◽  
...  

Abstract As a candidate ‘super-Chandrasekhar’ or 09dc-like Type Ia supernova (SN Ia), SN 2012dn shares many characteristics with other members of this remarkable class of objects but lacks their extraordinary luminosity. Here, we present and discuss the most comprehensive optical data set of this SN to date, comprised of a densely sampled series of early-time spectra obtained within the Nearby Supernova Factory project, plus photometry and spectroscopy obtained at the VLT about 1 yr after the explosion. The light curves, colour curves, spectral time series and ejecta velocities of SN 2012dn are compared with those of other 09dc-like and normal SNe Ia, the overall variety within the class of 09dc-like SNe Ia is discussed, and new criteria for 09dc-likeness are proposed. Particular attention is directed to additional insight that the late-phase data provide. The nebular spectra show forbidden lines of oxygen and calcium, elements that are usually not seen in late-time spectra of SNe Ia, while the ionisation state of the emitting iron plasma is low, pointing to low ejecta temperatures and high densities. The optical light curves are characterised by an enhanced fading starting ∼60 d after maximum and very low luminosities in the nebular phase, which is most readily explained by unusually early formation of clumpy dust in the ejecta. Taken together, these effects suggest a strongly perturbed ejecta density profile, which might lend support to the idea that 09dc-like characteristics arise from a brief episode of interaction with a hydrogen-deficient envelope during the first hours or days after the explosion.


2020 ◽  
Vol 496 (3) ◽  
pp. 3725-3740
Author(s):  
Zoltán Jäger ◽  
József Vinkó ◽  
Barna I Bíró ◽  
Tibor Hegedüs ◽  
Tamás Borkovits ◽  
...  

ABSTRACT We present observations and analysis of PSN J17292918+7542390, a low-luminosity Type II-P supernova (LL SN IIP). The observed sample of such events is still low, and their nature is still under debate. Such SNe are similar to SN 2005cs, a well-observed LL Type II-P event, having low expansion velocities, and small ejected 56Ni mass. We have developed a robust and relatively fast Monte Carlo code that fits semi-analytic models to light curves of core-collapse SNe. This allows the estimation of the most important physical parameters, like the radius of the progenitor star, the mass of the ejected envelope, the mass of the radioactive nickel synthesized during the explosion, among others. PSN J17292918+7542390 has $R_0 = 91_{-70}^{+119} \times 10^{11} \, \text{cm}$, $M_\text{ej} = 9.89_{-1.00}^{+2.10} \, \mathrm{ M}_{\odot }$, $E_{\mbox{kin}} = 0.65_{-0.18}^{+0.19} \, \text{foe}$, and $v_{\mbox{exp}} = 3332_{-347}^{+216}$ km s−1, for its progenitor radius, ejecta mass, kinetic energy, and expansion velocity, respectively. The initial nickel mass of the PSN J17292918+7542390 turned out to be $1.55_{-0.70}^{+0.75} \times 10^{-3} \, \mathrm{M}_{\odot }$. The measured photospheric velocity at the earliest observed phase is 7000 km s−1. As far as we can tell based on the small population of observed LL SNe IIP, the determined values are typical for these events.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 460-460
Author(s):  
Athira Menon ◽  
Alexander Heger

AbstractWe construct stellar evolution models until core collapse using KEPLER (Woosley & Heger (2007)) to reproduce the observed signatures of the blue supergiant (BSG) progenitor of SN 1987A. This is based on the binary merger scenario proposed by Podsiadlowski (1992) and Ivanova et al. (2002). Various combinations of initial parameters for the binary components (M1=16–18 M⊙ and M2=5–10 M⊙) and their merging, successfully match the He, N/C and N/O ratios, along with the luminosity and effective temperature of the progenitor. Most of our models end their lives as BSGs. Thus we may be able to explain the origin of all Type IIP SNe that resemble SN 1987A through such mergers. We are currently working on the light curves and nuclear yields from the explosion of these models to compare them SN 1987A.


1989 ◽  
Vol 8 ◽  
pp. 185-192 ◽  
Author(s):  
R M Catchpole

The Type II supernova SN1987A which occurred in the LMC is the brightest and most completely observed supernova ever recorded. Objective prism and UBV observations were made of the blue supergiant progenitor Sanduleak −69°202 and indicate that the visual absorption lies in the range 0.4<AV<0.6. Furthermore, the distance to the LMC is known in absolute units with a precision of about ± 15% (m-M = 18.45, Feast 1988) which combined with the above data and subseguent photometric observations permits detailed comparison with theory.Within 107 minutes of the Kamiokande 1MB neutrino event the region of the supernova was being observed by Albert Jones, although it was not until 0.8 days after the event that the supernova was officially discovered by Shelton. The first photoelectric observation was made at 1.1 days, by William Allen (1988) a New Zealand amateur. Other observations made during the first two days, have been conveniently tabulated by Arnett (1988). During this time the supernova steadily brightened in V, although theory predicts that it was rapidly fading bolometrically and cooling, after the intense heating that occurred when the shock wave reached the stellar surface about 3 hours after core collapse.


Sign in / Sign up

Export Citation Format

Share Document