scholarly journals The Impact of Realistic Red Supergiant Mass Loss on Stellar Evolution

2021 ◽  
Vol 922 (1) ◽  
pp. 55
Author(s):  
Emma R. Beasor ◽  
Ben Davies ◽  
Nathan Smith

Abstract Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 and 30M ⊙the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolution, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new M ̇ prescription calibrated to RSGs with initial masses between 10 and 25 M ⊙, which unlike previous prescriptions does not overestimate M ̇ for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass loss by recomputing the evolution of stars with masses 12–27 M ⊙ with the new M ̇ -prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30 M ⊙ to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.

2019 ◽  
Vol 55 (2) ◽  
pp. 161-175
Author(s):  
L. Hernández-Cervantes ◽  
B. Pérez-Rendón ◽  
A. Santillán ◽  
G. García-Segura ◽  
C. Rodríguez-Ibarra

In this work, we present models of massive stars between 15 and 23 M⊙ , with enhanced mass loss rates during the red supergiant phase. Our aim is to explore the impact of extreme red supergiant mass-loss on stellar evolution and on their circumstellar medium. We computed a set of numerical experiments, on the evolution of single stars with initial masses of 15, 18, 20 and, 23 M⊙ , and solar composition (Z = 0.014), using the numerical stellar code BEC. From these evolutionary models, we obtained time-dependent stellar wind parameters, that were used explicitly as inner boundary conditions in the hydrodynamical code ZEUS-3D, which simulates the gas dynamics in the circumstellar medium (CSM), thus coupling the stellar evolution to the dynamics of the CSM. We found that stars with extreme mass loss in the RSG phase behave as a larger mass stars.


2019 ◽  
Vol 627 ◽  
pp. A151 ◽  
Author(s):  
T. Shenar ◽  
D. P. Sablowski ◽  
R. Hainich ◽  
H. Todt ◽  
A. F. J. Moffat ◽  
...  

Context. Massive Wolf–Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectroscopy of WR binaries has so-far largely been avoided because of its complexity, our study focuses on the 44 WR binaries and binary candidates of the Large Magellanic Cloud (LMC; metallicity Z ≈ 0.5 Z⊙), which were identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Aims. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at subsolar metallicity and constraining the impact of binary interaction in forming these stars. Methods. Spectroscopy was performed using the Potsdam Wolf–Rayet (PoWR) code and cross-correlation techniques. Disentanglement was performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status was interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically homogeneous evolution. Results. Among our sample, 28/44 objects show composite spectra and are analyzed as such. An additional five targets show periodically moving WR primaries but no detected companions (SB1); two (BAT99 99 and 112) are potential WR + compact-object candidates owing to their high X-ray luminosities. We cannot confirm the binary nature of the remaining 11 candidates. About two-thirds of the WN components in binaries are identified as cWR, and one-third as hydrogen-burning WR stars. We establish metallicity-dependent mass-loss recipes, which broadly agree with those recently derived for single WN stars, and in which so-called WN3/O3 stars are clear outliers. We estimate that 45  ±  30% of the cWR stars in our sample have interacted with a companion via mass transfer. However, only ≈12  ±  7% of the cWR stars in our sample naively appear to have formed purely owing to stripping via a companion (12% b-WR). Assuming that apparently single WR stars truly formed as single stars, this comprises ≈4% of the whole LMC WN population, which is about ten times less than expected. No obvious differences in the properties of single and binary WN stars, whose luminosities extend down to log L ≈ 5.2 [L⊙], are apparent. With the exception of a few systems (BAT99 19, 49, and 103), the equatorial rotational velocities of the OB-type companions are moderate (veq ≲ 250 km s−1) and challenge standard formalisms of angular-momentum accretion. For most objects, chemically homogeneous evolution can be rejected for the secondary, but not for the WR progenitor. Conclusions. No obvious dichotomy in the locations of apparently single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.


2007 ◽  
Vol 3 (S250) ◽  
pp. 217-230 ◽  
Author(s):  
Raphael Hirschi ◽  
Cristina Chiappini ◽  
Georges Meynet ◽  
André Maeder ◽  
Sylvia Ekström

AbstractMassive stars played a key role in the early evolution of the Universe. They formed with the first halos and started the re-ionisation. It is therefore very important to understand their evolution. In this review, we first recall the effect of metallicity (Z) on the evolution of massive stars. We then describe the strong impact of rotation induced mixing and mass loss at very low Z. The strong mixing leads to a significant production of primary 14N, 13C and 22Ne. Mass loss during the red supergiant stage allows the production of Wolf-Rayet stars, type Ib,c supernovae and possibly gamma-ray bursts (GRBs) down to almost Z = 0 for stars more massive than 60 M⊙. Galactic chemical evolution models calculated with models of rotating stars better reproduce the early evolution of N/O, C/O and 12C/13C. Finally, the impact of magnetic fields is discussed in the context of GRBs.


Author(s):  
Sylvia Ekström

After a brief introduction to stellar modeling, the main lines of massive star evolution are reviewed, with a focus on the nuclear reactions from which the star gets the needed energy to counterbalance its gravity. The different burning phases are described, as well as the structural impact they have on the star. Some general effects on stellar evolution of uncertainties in the reaction rates are presented, with more precise examples taken from the uncertainties of the 12C(α, γ)16O reaction and the sensitivity of the s-process on many rates. The changes in the evolution of massive stars brought by low or zero metallicity are reviewed. The impact of convection, rotation, mass loss, and binarity on massive star evolution is reviewed, with a focus on the effect they have on the global nucleosynthetic products of the stars.


2014 ◽  
Vol 9 (S307) ◽  
pp. 70-75
Author(s):  
V. Prat ◽  
F. Lignières ◽  
G. Lesur

AbstractMassive stars often experience fast rotation, which is known to induce turbulent mixing with a strong impact on the evolution of these stars. Local direct numerical simulations of turbulent transport in stellar radiative zones are a promising way to constrain phenomenological transport models currently used in many stellar evolution codes. We present here the results of such simulations of stably-stratified sheared turbulence taking notably into account the effects of thermal diffusion and chemical stratification. We also discuss the impact of theses results on stellar evolution theory.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 460-460
Author(s):  
Athira Menon ◽  
Alexander Heger

AbstractWe construct stellar evolution models until core collapse using KEPLER (Woosley & Heger (2007)) to reproduce the observed signatures of the blue supergiant (BSG) progenitor of SN 1987A. This is based on the binary merger scenario proposed by Podsiadlowski (1992) and Ivanova et al. (2002). Various combinations of initial parameters for the binary components (M1=16–18 M⊙ and M2=5–10 M⊙) and their merging, successfully match the He, N/C and N/O ratios, along with the luminosity and effective temperature of the progenitor. Most of our models end their lives as BSGs. Thus we may be able to explain the origin of all Type IIP SNe that resemble SN 1987A through such mergers. We are currently working on the light curves and nuclear yields from the explosion of these models to compare them SN 1987A.


2017 ◽  
Vol 12 (S331) ◽  
pp. 11-16 ◽  
Author(s):  
Sanskriti Das ◽  
Alak Ray

AbstractWe show how the dense shells of circumstellar gas immediately outside the red supergiants(RSGs) can affect the early optical light curves of Type II-P SNe taking the example of 2013ej. The peak in V, R and I bands, decline rate after peak and plateau length are found to be strongly influenced by the dense CSM formed due to enhanced mass loss during the oxygen and silicon burning stage of the progenitor. We find that the required explosion energy for the progenitors with CSM is reduced by almost a factor of 2.


2008 ◽  
Vol 4 (S254) ◽  
pp. 355-368 ◽  
Author(s):  
Ken'ichi Nomoto ◽  
Shinya Wanajo ◽  
Yasuomi Kamiya ◽  
Nozomu Tominaga ◽  
Hideyuki Umeda

AbstractWe review the final stages of stellar evolution, supernova properties, and chemical yields as a function of the progenitor's mass. (1) 8 - 10 M⊙ stars are super-AGB stars when the O+Ne+Mg core collapses due to electron capture. These AGB-supernovae may constitute an SN 2008S-like sub-class of Type IIn supernovae. These stars produce little α-elements and Fe-peak elements, but are important sources of Zn and light p-nuclei. (2) 10 - 90 M⊙ stars undergo Fe-core collapse. Nucleosynthesis in aspherical explosions is important, as it can well reproduce the abundance patterns observed in extremely metal-poor stars. (3) 90 - 140 M⊙ stars undergo pulsational nuclear instabilities at various nuclear burning stages, including O and Si-burning. (4) Very massive stars with M ≳ 140 M⊙ either become pair-instability SNe, or undergo core-collapse to form intermediate mass black holes if the mass loss is small enough.


2017 ◽  
Vol 12 (S331) ◽  
pp. 1-10
Author(s):  
R. Hirschi ◽  
D. Arnett ◽  
A. Cristini ◽  
C. Georgy ◽  
C. Meakin ◽  
...  

AbstractMassive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.


2011 ◽  
Vol 7 (S279) ◽  
pp. 341-342
Author(s):  
Samuel Jones ◽  
Raphael Hirschi ◽  
Falk Herwig ◽  
Bill Paxton ◽  
Francis X. Timmes ◽  
...  

AbstractWe investigate the lowest mass stars that produce Type-II supernovae, motivated by recent results showing that a large fraction of type-II supernova progenitors for which there are direct detections display unexpectedly low luminosity (for a review see e.g. Smartt 2009). There are three potential evolutionary channels leading to this fate. Alongside the standard ‘massive star’ Fe-core collapse scenario we investigate the likelihood of electron capture supernovae (EC-SNe) from super-AGB (S-AGB) stars in their thermal pulse phase, from failed massive stars for which neon burning and other advanced burning stages fail to prevent the star from contracting to the critical densities required to initiate rapid electron-capture reactions and thus the star's collapse. We find it indeed possible that both of these relatively exotic evolutionary channels may be realised but it is currently unclear for what proportion of stars. Ultimately, the supernova light curves, explosion energies, remnant properties (see e.g. Knigge et al. 2011) and ejecta composition are the quantities desired to establish the role that these stars at the lower edge of the massive star mass range play.


Sign in / Sign up

Export Citation Format

Share Document