scholarly journals LIPAD Simulations of Giant Planet Core Formation

2013 ◽  
Vol 8 (S299) ◽  
pp. 171-172
Author(s):  
Henry Ngo ◽  
Martin J. Duncan ◽  
Harold F. Levison

AbstractWe present some preliminary results from our investigation of giant planetary core formation using numerical simulations with the Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD) by Levison et al. (2012). LIPAD couples dynamics with collisional evolution, including fragmentation. We start with a cold planetesimal disk using particles of a few kilometres in size. Our simulations show growth from kilometre-sized planetesimals to several Earth-mass sized embryos (tens of thousands of kilometers) can occur. However, these embryos may not be large enough to start runaway gas accretion necessary to build the envelopes of gas giant planets.

2021 ◽  
Vol 922 (1) ◽  
pp. 16
Author(s):  
Hiroshi Kobayashi ◽  
Hidekazu Tanaka

Abstract Gas-giant planets, such as Jupiter, Saturn, and massive exoplanets, were formed via the gas accretion onto the solid cores, each with a mass of roughly 10 Earth masses. However, rapid radial migration due to disk–planet interaction prevents the formation of such massive cores via planetesimal accretion. Comparably rapid core growth via pebble accretion requires very massive protoplanetary disks because most pebbles fall into the central star. Although planetesimal formation, planetary migration, and gas-giant core formation have been studied with a lot of effort, the full evolution path from dust to planets is still uncertain. Here we report the result of full simulations for collisional evolution from dust to planets in a whole disk. Dust growth with realistic porosity allows the formation of icy planetesimals in the inner disk (≲10 au), while pebbles formed in the outer disk drift to the inner disk and there grow to planetesimals. The growth of those pebbles to planetesimals suppresses their radial drift and supplies small planetesimals sustainably in the vicinity of cores. This enables rapid formation of sufficiently massive planetary cores within 0.2–0.4 million years, prior to the planetary migration. Our models shows the first gas giants form at 2–7 au in rather common protoplanetary disks, in agreement with the exoplanet and solar systems.


2019 ◽  
Vol 491 (3) ◽  
pp. 4481-4487
Author(s):  
Ares Osborn ◽  
Daniel Bayliss

ABSTRACT We investigate the giant planet–metallicity correlation for a homogeneous, unbiased set of 217 hot Jupiters taken from nearly 15 yr of wide-field ground-based surveys. We compare the host star metallicity to that of field stars using the Besançon Galaxy model, allowing for a metallicity measurement offset between the two sets. We find that hot Jupiters preferentially orbit metal-rich stars. However, we find the correlation consistent, though marginally weaker, for hot Jupiters ($\beta =0.71^{+0.56}_{-0.34}$) than it is for other longer period gas giant planets from radial velocity surveys. This suggests that the population of hot Jupiters probably formed in a similar process to other gas giant planets, and differ only in their migration histories.


Author(s):  
Masahiro N. Machida ◽  
Eiichiro Kokubo ◽  
Shu-ichiro Inutsuka ◽  
Tomoaki Matsumoto
Keyword(s):  

2020 ◽  
Vol 498 (1) ◽  
pp. 680-688 ◽  
Author(s):  
Sivan Ginzburg ◽  
Eugene Chiang

ABSTRACT Some Jupiter-mass exoplanets contain ${\sim}100\, {\rm M}_{\hbox{$\oplus $}}$ of metals, well above the ${\sim}10\, {\rm M}_{\hbox{$\oplus $}}$ typically needed in a solid core to trigger giant planet formation by runaway gas accretion. We demonstrate that such ‘heavy-metal Jupiters’ can result from planetary mergers near ∼10 au. Multiple cores accreting gas at runaway rates gravitationally perturb one another on to crossing orbits such that the average merger rate equals the gas accretion rate. Concurrent mergers and gas accretion implies the core mass scales with the total planet mass as Mcore ∝ M1/5 – heavier planets harbour heavier cores, in agreement with the observed relation between total mass and metal mass. While the average gas giant merges about once to double its core, others may merge multiple times, as merger trees grow chaotically. We show that the dispersion of outcomes inherent in mergers can reproduce the large scatter in observed planet metallicities, assuming $3{-}30\, {\rm M}_{\hbox{$\oplus $}}$ pre-runaway cores. Mergers potentially correlate metallicity, eccentricity, and spin.


2011 ◽  
Vol 738 (1) ◽  
pp. 35 ◽  
Author(s):  
Hiroshi Kobayashi ◽  
Hidekazu Tanaka ◽  
Alexander V. Krivov

2016 ◽  
Vol 11 (S321) ◽  
pp. 208-210
Author(s):  
J. Sánchez Almeida ◽  
A. Olmo-García ◽  
B. G. Elmegreen ◽  
C. Muñoz-Tuñón ◽  
D. M. Elmegreen ◽  
...  

AbstractDisk galaxies in cosmological numerical simulations grow by accreting gas from the cosmic web. This gas reaches the external disk, and then spirals in dragged along by tidal forces and/or disk instabilities. The importance of gas infall is as clear from numerical simulations as it is obscure to observations. Extremely metal poor (XMP) galaxies seem to be the best example we have of the gas accretion process at work. They have large off-center starbursts which show significant metallicity drop compared with the host galaxy. This observation is naturally explained as a gas accretion event caught in the act. We present preliminary results of the kinematical properties of the metal poor starbursts in XMPs, which suggest that the starbursts are kinematically decoupled entities within the host galaxy.


2019 ◽  
Vol 622 ◽  
pp. A202 ◽  
Author(s):  
Anders Johansen ◽  
Shigeru Ida ◽  
Ramon Brasser

Planetary migration is a major challenge for planet-formation theories. The speed of type-I migration is proportional to the mass of a protoplanet, while the final decade of growth of a pebble-accreting planetary core takes place at a rate that scales with the mass to the two-thirds power. This results in planetary growth tracks (i.e., the evolution of the mass of a protoplanet versus its distance from the star) that become increasingly horizontal (migration dominated) with the rising mass of the protoplanet. It has been shown recently that the migration torque on a protoplanet is reduced proportional to the relative height of the gas gap carved by the growing planet. Here we show from 1D simulations of planet–disc interaction that the mass at which a planet carves a 50% gap is approximately 2.3 times the pebble isolation mass. Our measurements of the pebble isolation mass from 1D simulations match published 3D results relatively well, except at very low viscosities (α < 10−3) where the 3D pebble isolation mass is significantly higher, possibly due to gap edge instabilities that are not captured in 1D. The pebble isolation mass demarks the transition from pebble accretion to gas accretion. Gas accretion to form gas-giant planets therefore takes place over a few astronomical units of migration after reaching first the pebble isolation mass and, shortly after, the 50% gap mass. Our results demonstrate how planetary growth can outperform migration both during core accretion and during gas accretion, even when the Stokes number of the pebbles is small, St ~ 0.01, and the pebble-to-gas flux ratio in the protoplanetary disc is in the nominal range of 0.01–0.02. We find that planetary growth is very rapid in the first million years of the protoplanetary disc and that the probability for forming gas-giant planets increases with the initial size of the protoplanetary disc and with decreasing turbulent diffusion.


2020 ◽  
Vol 496 (3) ◽  
pp. 3314-3325 ◽  
Author(s):  
John Wimarsson ◽  
Beibei Liu ◽  
Masahiro Ogihara

ABSTRACT We propose a pebble-driven planet formation scenario to form giant planets with high multiplicity and large orbital distances in the early gas disc phase. We perform N-body simulations to investigate the growth and migration of low-mass protoplanets in the disc with inner viscously heated and outer stellar irradiated regions. The key feature of this model is that the giant planet cores grow rapidly by a combination of pebble accretion and planet–planet collisions. This consequently speeds up their gas accretion. Because of efficient growth, the planet transitions from rapid type I migration to slow type II migration early, reducing the inward migration substantially. Multiple giant planets can sequentially form in this way with increasing semimajor axes. Both mass growth and orbital retention are more pronounced when a large number of protoplanets are taken into account compared to the case of single planet growth. Eventually, a few numbers of giant planets form with orbital distances of a few to a few tens of aus within 1.5–3 Myr after the birth of the protoplanets. The resulting simulated planet populations could be linked to the substructures exhibited in disc observations as well as large orbital distance exoplanets observed in radial velocity and microlensing surveys.


2020 ◽  
Vol 642 ◽  
pp. A75 ◽  
Author(s):  
Oliver Voelkel ◽  
Hubert Klahr ◽  
Christoph Mordasini ◽  
Alexandre Emsenhuber ◽  
Christian Lenz

Context. The formation of gas giant planets by the accretion of 100 km diameter planetesimals is often thought to be inefficient. A diameter of this size is typical for planetesimals and results from self-gravity. Many models therefore use small kilometer-sized planetesimals, or invoke the accretion of pebbles. Furthermore, models based on planetesimal accretion often use the ad hoc assumption of planetesimals that are distributed radially in a minimum-mass solar-nebula way. Aims. We use a dynamical model for planetesimal formation to investigate the effect of various initial radial density distributions on the resulting planet population. In doing so, we highlight the directive role of the early stages of dust evolution into pebbles and planetesimals in the circumstellar disk on the subsequent planet formation. Methods. We implemented a two-population model for solid evolution and a pebble flux-regulated model for planetesimal formation in our global model for planet population synthesis. This framework was used to study the global effect of planetesimal formation on planet formation. As reference, we compared our dynamically formed planetesimal surface densities with ad hoc set distributions of different radial density slopes of planetesimals. Results. Even though required, it is not the total planetesimal disk mass alone, but the planetesimal surface density slope and subsequently the formation mechanism of planetesimals that enables planetary growth through planetesimal accretion. Highly condensed regions of only 100 km sized planetesimals in the inner regions of circumstellar disks can lead to gas giant growth. Conclusions. Pebble flux-regulated planetesimal formation strongly boosts planet formation even when the planetesimals to be accreted are 100 km in size because it is a highly effective mechanism for creating a steep planetesimal density profile. We find that this leads to the formation of giant planets inside 1 au already by pure 100 km planetesimal accretion. Eventually, adding pebble accretion regulated by pebble flux and planetesimal-based embryo formation as well will further complement this picture.


2004 ◽  
Vol 202 ◽  
pp. 241-243
Author(s):  
Edward W. Thommes ◽  
Martin J. Duncan ◽  
Harold F. Levison ◽  
John E. Chambers

It has been proposed that Uranus and Neptune originated interior to ∽ 10 AU, as potential gas giant cores which were scattered outward when Jupiter won the race to reach runaway gas accretion. We present further numerical simulations of this scenario, which show that it reproduces the present configuration of the outer Solar System with a high degree of success for a wide range of initial conditions. Also, we show that this mechanism may have simultaneously ejected planets from the asteroid belt.


Sign in / Sign up

Export Citation Format

Share Document