scholarly journals Detailed distributions of the CO J = (2 − 1)/J = (1 − 0) intensity ratios toward a large area of the central molecular zone

2013 ◽  
Vol 9 (S303) ◽  
pp. 106-108
Author(s):  
Kazufumi Torii ◽  
Rei Enokiya ◽  
Yasuo Fukui ◽  
Hiroaki Yamamoto ◽  
Akiko Kawamura ◽  
...  

AbstractWe present the first results of the new CO J = (2 − 1) observations toward the central molecular zone (CMZ) using the NANTEN2 telescope at an angular resolution of 100″. Large area coverage of 4° × 2° in l and b and a high angular resolution of 100″ enable us to investigate detailed structures of the molecular gas in the CMZ including peculiar molecular filaments perpendicularly to the Galactic plane to b > |0.5°|. The major components of the CMZ, e.g., Sgr A, Sgr B and Sgr C cloud complexes, show high CO J = (2 − 1)/J = (1 − 0) ratios around 0.9, indicating highly excited conditions of the molecular gas, while the local foreground components show less than 0.4. The molecular filaments show the typical ratios of 0.6–0.7 indicate that they are indeed located in the Galactic center.

2004 ◽  
Vol 221 ◽  
pp. 275-282
Author(s):  
Vincent Minier

The newly upgraded Australia Telescope Compact Array (ATCA) at millimetre wavelengths is the first millimetre interferometer to be built in the Southern Hemisphere. The full array will be operational in 2004-2005 and will provide arcsec angular resolution at 3 mm and 12 mm. This will be a unique instrument to study at high angular resolution the interstellar chemistry and more generally the star formation process, especially in the bulk of the galactic plane and in the Magellanic Clouds. The upgraded ATCA will also be an excellent tool to detect dust emission from nearby protoplanetary disks. In this paper I will present the first results from the upgraded ATCA at 3 mm and 12 mm. The result review will cover the topics of massive star formation and hot molecular cores dust emission from star-forming regions and detection of protoplanetary disks.


1989 ◽  
Vol 136 ◽  
pp. 421-422
Author(s):  
Aa. Sandqvist ◽  
R. Karlsson ◽  
J. B. Whiteoak

The 18-cm distribution of OH in the Galactic Center region near Sgr A has been mapped in all four of the 1612, 1665, 1667 and 1720 MHz OH absorption lines using the VLA with 4 arcsec angular resolution and 9 kms-1 velocity resolution. The OH gas at +50 and +20 kms-l is seen clearly in absorption against the shell structure of Sgr A East but not against the spiral structure of Sgr A West, possibly implying that this molecular gas lies between the two continuum components - behind Sgr A West and in front of Sgr A East. Inside the Circumnuclear Disk, there is a new neutral streamer which sweeps from the disk in towards Sgr A∗ as the observed radial velocity decreases from +78 to +16 kms-1. The streamer may have a negative-velocity counterpart on the opposite side of Sgr A∗.


2016 ◽  
Vol 11 (S322) ◽  
pp. 257-258
Author(s):  
Francisco Nogueras-Lara ◽  
Rainer Schödel

AbstractBecause of the unique observational challenges -extreme crowding and extinction- any existing large-scale near-infrared (NIR) imaging data on the Galactic Center (GC) are limited by either one, or a combination, of the following: saturation, lack of sensitivity, too low angular resolution, or lack of multi-wavelength coverage. To overcome this situation, we are currently carrying out a sensitive, 0.2” resolution JHK imaging survey of the Galactic Centre with HAWK-I/VLT. Thanks to holographic imaging, we achieve a similar resolution than with HST/WFC, but can cover also the long NIR, beyond 2 micrometers, which is essential to deal with extinction. Our survey is supported by an ESO Large Programme and will provide photometrically accurate (few percent uncertainty for H < 18 stars), high-angular resolution, NIR data for an area of several 1000 pc2, a more than ten-fold increase compared to the current state of affairs. Here we present an overview and first results.


2019 ◽  
Vol 632 ◽  
pp. A58 ◽  
Author(s):  
A. J. Rigby ◽  
T. J. T. Moore ◽  
D. J. Eden ◽  
J. S. Urquhart ◽  
S. E. Ragan ◽  
...  

The latest generation of high-angular-resolution unbiased Galactic plane surveys in molecular-gas tracers are enabling the interiors of molecular clouds to be studied across a range of environments. The CO Heterodyne Inner Milky Way Plane Survey (CHIMPS) simultaneously mapped a sector of the inner Galactic plane, within 27.8° ≲ ℓ ≲ 46.2° and |b|≤ 0°.5, in 13CO (3–2) and C18O (3–2) at an angular resolution of 15 arcsec. The combination of the CHIMPS data with 12CO (3–2) data from the CO High Resolution Survey (COHRS) has enabled us to perform a voxel-by-voxel local-thermodynamic-equilibrium (LTE) analysis, determining the excitation temperature, optical depth, and column density of 13CO at each ℓ, b, v position. Distances to discrete sources identified by FELLWALKER in the 13CO (3–2) emission maps were determined, allowing the calculation of numerous physical properties of the sources, and we present the first source catalogues in this paper. We find that, in terms of size and density, the CHIMPS sources represent an intermediate population between large-scale molecular clouds identified by CO and dense clumps seen in thermal dust continuum emission, and therefore represent the bulk transition from the diffuse to the dense phase of molecular gas. We do not find any significant systematic variations in the masses, column densities, virial parameters, mean excitation temperature, or the turbulent pressure over the range of Galactocentric distance probed, but we do find a shallow increase in the mean volume density with increasing Galactocentric distance. We find that inter-arm clumps have significantly narrower linewidths, and lower virial parameters and excitation temperatures than clumps located in spiral arms. When considering the most reliable distance-limited subsamples, the largest variations occur on the clump-to-clump scale, echoing similar recent studies that suggest that the star-forming process is largely insensitive to the Galactic-scale environment, at least within the inner disc.


1981 ◽  
Vol 96 ◽  
pp. 281-295
Author(s):  
Ian Gatley ◽  
E. E. Becklin

Recent infrared and radio observations of the Galactic Center are reviewed. For the region between 1 and 100 pc most of the observed phenomena can be explained by a large density of late-type stars, a ring of molecular material, and a number of regions of active star formation. The central parsec (Sgr A) appears to be a unique region of activity in the Galaxy; this result is based on recent high angular resolution data at 30 to 100 μm and high resolution spectral line observations at 12.8 μm. The observations are discussed in terms of the mass, density structure, and luminosity of the region; the ultimate source of the activity is discussed.


Author(s):  
J. Saponara ◽  
P. Benaglia ◽  
I. Andruchow ◽  
C. H. Ishwara-Chandra ◽  
H. T. Intema

Abstract We present a collection of double-lobed sources towards a $20\,\mathrm{deg}^2$ area of the Cygnus region at the northern sky, observed at 325 and 610 MHz with the Giant Metrewave Radio Telescope. The 10 $^{\prime\prime}$ resolution achieved at 325 MHz is 5.5 times better than previous studies, while at 610 MHz, these are the first results ever of such a large area, mapped with 6 $^{\prime\prime}$ angular resolution. After a thorough visual inspection of the images at the two bands, we found 43 double-lobed source candidates, proposed as such due to the presence of 2 bright peaks, within a few arcminutes apart, joined by a bridge or a central nucleus. All but two are presented here as a double-lobed candidates for the first time. Thirty nine of the candidates were covered at both bands, and we provide the spectral index information for them. We have searched for positional coincidences between the detected sources/components and other objects from the literature, along the electromagnetic spectrum. Twenty-three candidates possess radio counterpart(s), 12 present infrared counterparts, and 1 showed an overlapping X-ray source. We analysed each candidate considering morphology, counterparts, and spectral indices. Out of the 43 candidates, 37 show characteristics compatible with an extragalactic nature, 2 of probably Galactic origin, 3 remain as dubious cases, though with feature(s) compatible with an extragalactic nature, and the remaining one, evidence of physically unrelated components. The median spectral index of the 40 putative extragalactic sources is $-1.0$ . Their celestial surface density at 610 MHz resulted in $1.9\,\mathrm{per\ deg}^2$ , across a region lying at the Galactic plane.


2013 ◽  
Vol 9 (S303) ◽  
pp. 439-443
Author(s):  
Charles J. Hailey ◽  

AbstractOne of the major science objectives of the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory is to perform the first sub-arcminute, hard X-ray survey of several square degrees of the Galactic plane, centered on a region near the Galactic center. As a prelude to the full survey, which began in July 2013, NuSTAR conducted a ∼500 ks, 0.3 × 0.4° “mini-survey” focused on Sgr A* and its environs. We present analysis of several candidate pulsar wind nebulae and filaments, which are revealed to be intense sources of X-ray emission at >10 keV.


2016 ◽  
Vol 11 (S322) ◽  
pp. 168-169
Author(s):  
Javier R. Goicoechea ◽  
Mireya Etxaluze ◽  
José Cernicharo ◽  
Maryvonne Gerin ◽  
Jerome Pety ◽  
...  

AbstractThe angular resolution (~10″) achieved by the Herschel Space Observatory ~3.5 m telescope at FIR wavelengths allowed us to roughly separate the emission toward the inner parsec of the galaxy (the central cavity) from that of the surrounding circumnuclear disk (the CND). The FIR spectrum toward Sgr A* is dominated by intense [O iii], [O i], [C ii], [N iii], [N ii], and [C i] fine-structure lines (in decreasing order of luminosity) arising in gas irradiated by the strong UV field from the central stellar cluster. The high-J CO rotational line intensities observed at the interface between the inner CND and the central cavity are consistent with a hot isothermal component at Tk ≈ 103.1 K and n(H2)≈ 104 cm−3. They are also consistent with a distribution of lower temperatures at higher gas density, with most CO at Tk≈300 K. The hot CO component (either the bulk of the CO column density or just a small fraction depending on the above scenario) likely results from a combination of UV and shock-driven heating. If UV-irradiated and heated dense clumps do not exist, shocks likely dominate the heating of the hot molecular gas component. Although this component is beam diluted in our FIR observations, it may be resolved at much higher angular resolution. An ALMA project using different molecular tracers to characterize UV-irradiated shocks in the innermost layers of the CND is ongoing.


2017 ◽  
Vol 13 (S336) ◽  
pp. 176-179
Author(s):  
K. Immer ◽  
M. Reid ◽  
A. Brunthaler ◽  
K. Menten ◽  
Q. Zhang ◽  
...  

AbstractThe Central Molecular Zone (CMZ), the inner 450 pc of our Galaxy, is an exceptional region where the volume and column densities, gas temperatures, velocity dispersions, etc. are much higher than in the Galactic plane. It has been suggested that the formation of stars and clusters in this area is related to the orbital dynamics of the gas. The complex kinematic structure of the molecular gas was revealed by spectral line observations. However, these results are limited to the line-of-sight-velocities. To fully understand the motions of the gas within the CMZ, we have to know its location in 6D space (3D location + 3D motion). Recent orbital models have tried to explain the inflow of gas towards and its kinematics within this region. With parallax and proper motion measurements of masers in the CMZ we can discriminate among these models and constrain how our Galactic Center is fed with gas.


1997 ◽  
Vol 182 ◽  
pp. 141-152 ◽  
Author(s):  
J. Cernicharo ◽  
R. Neri ◽  
Bo Reipurth

We present high angular resolution observations of the molecular outflow associated with the optical jet and HH objects of the HH111 system. Interferometric observations in the CO J =2–1 and J =1–0 lines of the high velocity bullets associated with HH111 are presented for the first time. The molecular gas in these high velocity clumps has a moderate kinetic temperature and a mass of a few 10–4 M⊙ per bullet. We favor the view that HH jets and CO bullets, which represent different manifestations of the same physical phenomena, are driving the low-velocity molecular outflow.


Sign in / Sign up

Export Citation Format

Share Document