scholarly journals High-resolution spectropolarimetry of κ Cet: A proxy for the young Sun

2013 ◽  
Vol 9 (S302) ◽  
pp. 142-143
Author(s):  
J. D. do Nascimento ◽  
P. Petit ◽  
M. Castro ◽  
G. F. Porto de Mello ◽  
S. V. Jeffers ◽  
...  

Abstractκ1 Cet (HD 20630, HIP 15457, d = 9.16 pc, V = 4.84) is a dwarf star approximately 30 light-years away in the equatorial constellation of Cetus. Among the solar proxies studied in the Sun in Time, κ1 Cet stands out as potentially having a mass very close to solar and a young age. On this study, we monitored the magnetic field and the chromospheric activity from the Ca II H & K lines of κ1 Cet. We used the technique of Least-Square-Deconvolution (LSD, Donati et al. 1997) by simultaneously extracting the information contained in all 8,000 photospheric lines of the echelogram (for a linelist matching an atmospheric model of spectral type K1). To reconstruct a reliable magnetic map and characterize the surface differential rotation of κ1 Cet we used 14 exposures spread over 2 months, in order to cover at least two rotational cycles (Prot ~9.2 days). The Least Square deconvolution (LSD) technique was applied to detect the Zeeman signature of the magnetic field in each of our 14 observations and to measure its longitudinal component. In order to reconstruct the magnetic field geometry of κ1 Cet, we applied the Zeeman Doppler Imaging (ZDI) inversion method. ZDI revealed a structure in the radial magnetic field consisting of a polar magnetic spot. On this study, we present the fisrt look results of a high-resolution spectropolarimetric campaign to characterize the activity and the magnetic fields of this young solar proxy.

2018 ◽  
Vol 609 ◽  
pp. A88 ◽  
Author(s):  
N. Rusomarov ◽  
O. Kochukhov ◽  
A. Lundin

Context. Analysis of high-resolution spectropolarimetric time-series observations of early-type magnetic stars is currently the most advanced method of obtaining detailed information on their surface magnetic field topologies and horizontal spot distributions. Aims. In this study we analyse a new set of high-quality full Stokes vector observations of the magnetic Ap star HD 119419 – a member of the 14 Myr old Lower Cen-Cru association – for the purpose of studying the surface field topology and mapping the chemical abundance spots. Methods. We made use of the circular and linear polarisation data collected for HD 119419 with the HARPSpol instrument at the ESO 3.6-m telescope. These observations were analysed with a multi-line magnetic diagnostic technique and modelled in detail with a Magnetic Doppler imaging (MDI) code. Results. We present a new set of high-precision mean longitudinal magnetic field measurements and derive a revised stellar rotational period by comparing our measurements with the literature data. We also redetermine the basic stellar atmospheric parameters. Our four Stokes parameter magnetic inversions reveal a moderately complex surface field topology with a mean field strength of 18 kG and a maximum local strength of 24 kG. A poloidal dipolar component dominates the magnetic energy spectrum of the surface field in HD 119419. However, significant contributions of the higher-order spherical harmonic components are also present. We show that the dipole plus quadrupole part of the reconstructed field geometry is incapable of reproducing the observed amplitudes and shapes of the Stokes Q and U profiles. The chemical abundance distributions of Fe, Cr, Ti, and Nd, derived self-consistently with the magnetic field geometry, are characterised by large abundance gradients and a lack of clear correlation with the magnetic field structure. Conclusions. This full Stokes vector analysis of HD 119419 extends the modern hot-star magnetic mapping investigations to an open cluster Ap star with a well-determined age. Further, MDI studies of cluster members will allow us to study the field topologies and chemical abundance spots as a function of stellar age.


1993 ◽  
Vol 141 ◽  
pp. 11-19
Author(s):  
Axel Hofmann ◽  
Wolfgang Schmidt ◽  
Horst Balthasar ◽  
Theodore T. Tarbell ◽  
Zoe A. Frank

AbstractWe analysed calibrated Stokes V magnetograms and simultaneously measured Stokes I spectra of high spatial and spectral resolution taken in a medium sized sunspot. We found a clear (anti-) correlation between the brightness variation of penumbral structures and the longitudinal component (B*cosγ) of the magnetic field. No azimuthal variation of the amount of the magnetic field strength (B) was observed across dark and bright structures. There the field is more vertical in bright filaments compared to dark ones.


2013 ◽  
Vol 9 (S302) ◽  
pp. 290-299
Author(s):  
Oleg Kochukhov

AbstractStars with radiative envelopes, specifically the upper main sequence chemically peculiar (Ap) stars, were among the first objects outside our solar system for which surface magnetic fields have been detected. Currently magnetic Ap stars remains the only class of stars for which high-resolution measurements of both linear and circular polarization in individual spectral lines are feasible. Consequently, these stars provide unique opportunities to study the physics of polarized radiative transfer in stellar atmospheres, to analyze in detail stellar magnetic field topologies and their relation to starspots, and to test different methodologies of stellar magnetic field mapping. Here I present an overview of different approaches to modeling the surface fields in magnetic A- and B-type stars. In particular, I summarize the ongoing efforts to interpret high-resolution full Stokes vector spectra of these stars using magnetic Doppler imaging. These studies reveal an unexpected complexity of the magnetic field geometries in some Ap stars.


2008 ◽  
Vol 4 (S259) ◽  
pp. 403-404 ◽  
Author(s):  
James Silvester ◽  
O. Kochukhov ◽  
G. A. Wade ◽  
N. Piskunov ◽  
J. D. Landstreet ◽  
...  

AbstractWe will introduce a project using Magnetic Doppler Imaging (MDI) to create assumption-free vector magnetic field maps and chemical surface structure maps of chemically peculiar A and B type (or Ap) stars. We are exploiting the latest generation of spectropolarimeters (NARVAL at the Pic du Midi observatory, and ESPaDOnS at the Canada-France-Hawaii telescope), to obtain high-resolution time series of Stokes IQUV spectra of a selection of Ap stars. The spectra have superior signal-to-noise ratio, resolution and wavelength coverage to those used previously. This combined with the ground-breaking inversion techniques introduced by Kochukhov et al. (2002) results in maps which represent the state-of-the-art in the field of stellar cartography. These maps will allow us to better understand the links between the magnetic field and the physical processes leading to the formation of chemical structures in the photosphere and allow us to address questions surrounding the detailed magnetic field geometry of Ap stars.


2013 ◽  
Vol 9 (S302) ◽  
pp. 369-372
Author(s):  
Lisa Rosén ◽  
Oleg Kochukhov ◽  
Gregg A. Wade

AbstractMagnetic fields of cool active stars are currently studied polarimetrically using only circular polarization observations. This provides limited information about the magnetic field geometry since circular polarization is only sensitive to the line-of-sight component of the magnetic field. Reconstructions of the magnetic field topology will therefore not be completely trustworthy when only circular polarization is used. On the other hand, linear polarization is sensitive to the transverse component of the magnetic field. By including linear polarization in the reconstruction the quality of the reconstructed magnetic map is dramatically improved. For that reason, we wanted to identify cool stars for which linear polarization could be detected at a level sufficient for magnetic imaging. Four active RS CVn binaries, II Peg, HR 1099, IM Peg, and σ Gem were observed with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. Mean polarization profiles in all four Stokes parameters were derived using the multi-line technique of least-squares deconvolution (LSD). Not only was linear polarization successfully detected in all four stars in at least one observation, but also, II Peg showed an extraordinarily strong linear polarization signature throughout all observations. This qualifies II Peg as the first promising target for magnetic Doppler imaging in all four Stokes parameters and, at the same time, suggests that other such targets can possibly be identified.


Author(s):  
S. Horiuchi ◽  
Y. Matsui

A new high-voltage electron microscope (H-1500) specially aiming at super-high-resolution (1.0 Å point-to-point resolution) is now installed in National Institute for Research in Inorganic Materials ( NIRIM ), in collaboration with Hitachi Ltd. The national budget of about 1 billion yen including that for a new building has been spent for the construction in the last two years (1988-1989). Here we introduce some essential characteristics of the microscope.(1) According to the analysis on the magnetic field in an electron lens, based on the finite-element-method, the spherical as well as chromatic aberration coefficients ( Cs and Cc ). which enables us to reach the resolving power of 1.0Å. have been estimated as a function of the accelerating As a result of the calculaton. it was noted that more than 1250 kV is needed even when we apply the highest level of the technology and materials available at present. On the other hand, we must consider the protection against the leakage of X-ray. We have then decided to set the conventional accelerating voltage at 1300 kV. However. the maximum accessible voltage is 1500 kV, which is practically important to realize higher voltage stabillity. At 1300 kV it is expected that Cs= 1.7 mm and Cc=3.4 mm with the attachment of the specimen holder, which tilts bi-axially in an angle of 35° ( Fig.1 ). In order to minimize the value of Cc a small tank is additionally placed inside the generator tank, which must serve to seal the magnetic field around the acceleration tube. An electron gun with LaB6 tip is used.


1971 ◽  
Vol 43 ◽  
pp. 329-339 ◽  
Author(s):  
Dale Vrabec

Zeeman spectroheliograms of photospheric magnetic fields (longitudinal component) in the CaI 6102.7 Å line are being obtained with the new 61-cm vacuum solar telescope and spectroheliograph, using the Leighton technique. The structure of the magnetic field network appears identical to the bright photospheric network visible in the cores of many Fraunhofer lines and in CN spectroheliograms, with the exception that polarities are distinguished. This supports the evolving concept that solar magnetic fields outside of sunspots exist in small concentrations of essentially vertically oriented field, roughly clumped to form a network imbedded in the otherwise field-free photosphere. A timelapse spectroheliogram movie sequence spanning 6 hr revealed changes in the magnetic fields, including a systematic outward streaming of small magnetic knots of both polarities within annular areas surrounding several sunspots. The photospheric magnetic fields and a series of filtergrams taken at various wavelengths in the Hα profile starting in the far wing are intercompared in an effort to demonstrate that the dark strands of arch filament systems (AFS) and fibrils map magnetic field lines in the chromosphere. An example of an active region in which the magnetic fields assume a distinct spiral structure is presented.


2020 ◽  
Vol 633 ◽  
pp. A48 ◽  
Author(s):  
C. P. Folsom ◽  
D. Ó Fionnagáin ◽  
L. Fossati ◽  
A. A. Vidotto ◽  
C. Moutou ◽  
...  

Context. 55 Cancri hosts five known exoplanets, most notably the hot super-Earth 55 Cnc e, which is one of the hottest known transiting super-Earths. Aims. Because of the short orbital separation and host star brightness, 55 Cnc e provides one of the best opportunities for studying star-planet interactions (SPIs). We aim to understand possible SPIs in this system, which requires a detailed understanding of the stellar magnetic field and wind impinging on the planet. Methods. Using spectropolarimetric observations and Zeeman Doppler Imaging, we derived a map of the large-scale stellar magnetic field. We then simulated the stellar wind starting from the magnetic field map, using a 3D magneto-hydrodynamic model. Results. The map of the large-scale stellar magnetic field we derive has an average strength of 3.4 G. The field has a mostly dipolar geometry; the dipole is tilted by 90° with respect to the rotation axis and the dipolar strength is 5.8 G at the magnetic pole. The wind simulations based on this magnetic geometry lead us to conclude that 55 Cnc e orbits inside the Alfvén surface of the stellar wind, implying that effects from the planet on the wind can propagate back to the stellar surface and result in SPI.


1998 ◽  
Vol 11 (2) ◽  
pp. 679-681
Author(s):  
M. Landolfi

The observational quantities commonly used to study the magnetic field of CP stars – the mean field modulus and the mean longitudinal field, as well as the ‘mean asymmetry of the longitudinal field’ and the ‘mean quadratic field’ recently introduced by Mathys (1995a,b) – are based either on the Stokes parameter / or on the Stokes parameter V. However, a complete description of polarized radiation requires the knowledge of the full Stokes vector: in other words, we should expect that useful information is also contained in linear polarization (the Stokes parameters Q and U); or rather we should expect the information contained in (Q, U) and in V to be complementary, since linear and circular polarization are basically related to the transverse and the longitudinal component of the magnetic field, respectively.


2014 ◽  
Vol 9 (S307) ◽  
pp. 389-390
Author(s):  
Coralie Neiner ◽  

AbstractUVMag is a medium-size space telescope equipped with a high-resolution spectropolarimetrer working in the UV and visible domains. It will be proposed to ESA for a future M mission. It will allow scientists to study all types of stars as well as e.g. exoplanets and the interstellar medium. It will be particularly useful for massive stars, since their spectral energy distribution peaks in the UV. UVMag will allow us to study massive stars and their circumstellar environment (in particular the stellar wind) spectroscopically in great details. Moreover, with UVMag's polarimetric capabilities we will be able, for the first time, to measure the magnetic field of massive stars simultaneously at the stellar surface and in the wind lines, i.e. to completely map their magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document