scholarly journals Delta-slow solution to explain B supergiant stars' winds

2014 ◽  
Vol 9 (S307) ◽  
pp. 104-105
Author(s):  
M. Haucke ◽  
I. Araya ◽  
C. Arcos ◽  
M. Curé ◽  
L. Cidale ◽  
...  

AbstractA new radiation-driven wind solution called δ-slow was found by Curé et al. (2011) and it predicts a mass-loss rate and terminal velocity slower than the fast solution (m-CAK, Pauldrach et al. 1986). In this work, we present our first synthetic spectra based on the δ-slow solution for the wind of B supergiant (BSG) stars. We use the output of our hydrodynamical code HYDWIND as input in the radiative transport code FASTWIND (Puls et al. 2005). In order to obtain stellar and wind parameters, we try to reproduce the observed Hα, Hβ, Hγ, Hδ, Hei 4471, Hei 6678 and Heii 4686 lines. The synthetic profiles obtained with the new hydrodynamical solutions are in good agreement with the observations and could give us clues about the parameters involved in the radiation force.

1987 ◽  
Vol 122 ◽  
pp. 449-450
Author(s):  
Raman K. Prinja ◽  
Ian D. Howarth

The most sensitive indicators of mass-loss for stars in the upper left part of the HR diagram are the UV P Cygni profiles observed in the resonance lines of common ions such as N V, Si IV, and C IV. We present here some results from a study of these lines in the high resolution IUE spectra of 197 Ï stars. Profile fits were carried out in the manner described by Prinja & Howarth (1986) for all unsaturated P Cygni resonance doublets. The parameterisations adopted enable the product of mass-loss rate (Ṁ) and ion fraction (qi) to be determined at a given velocity, such that Ṁ qi°C Ni R* v∞, where Ni is the column density of the observed ion i, v∞ is the terminal velocity, and R⋆ is the stellar radius. The accompanying figures illustrate the behaviour of Ṁ qi (evaluated at 0.5 v∞) for N V and C IV.


2020 ◽  
Vol 635 ◽  
pp. A173 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. Fast line-driven stellar winds play an important role in the evolution of planetary nebulae, even though they are relatively weak. Aims. We provide global (unified) hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal velocities, and emergent fluxes from basic stellar parameters. Methods. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases for a star with a final mass of 0.569 M⊙. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties. Results. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for Teff ≈ 10 kK) and fade away at the white dwarf cooling track (below Teff = 105 kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung–Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around 20 kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about Teff = 40−50 kK. On the other hand, the terminal velocity increases from about a few hundreds of km s−1 to a few thousands of km s−1 during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side. Conclusions. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.


2019 ◽  
Vol 71 (4) ◽  
Author(s):  
Nao Takeda ◽  
Jun Fukue

Abstract Relativistic accretion disk winds driven by disk radiation are numerically examined by calculating the relativistic radiative transfer equation under a plane-parallel approximation. We first solve the relativistic transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained flux, we then solve the vertical hydrodynamical equation under the central gravity, and obtain a new velocity field and the mass-loss rate as an eigenvalue. We repeat these double iteration processes until both the intensity and velocity profiles converge. We further calculate these vertical disk winds at various disk radii for appropriate boundary conditions, and obtain the mass-loss rate as a function of a disk radius for a given disk luminosity. Since in the present study we assume a vertical flow, and the rotational effect is ignored, the disk wind can marginally escape for the Eddington disk luminosity. When the disk luminosity is close to the Eddington one, the wind flow is firstly decelerated at around z ∼ r, and then accelerated to escape. For a larger disk luminosity, on the other hand, the wind flow is monotonically accelerated to infinity. Under the boundary condition that the wind terminal velocity is equal to the Keplerian speed at the disk, we find that the normalized mass-loss rate per unit area, $\skew9\hat{\skew9\dot{J}}$, is roughly expressed as $\skew9\hat{\skew9\dot{J}} \sim 3 (r_{\rm in}/r_{\rm S}) \Gamma _{\rm d} \tau _{\rm b} (r/r_{\rm S})^{-5/2}(1-\sqrt{r_{\rm in}/r})$, where rin is the disk inner radius, rS is the Schwarzschild radius of the central object, Γd is the disk normalized luminosity, τb is the wind optical depth, and r is the radial distance from the center.


1988 ◽  
Vol 108 ◽  
pp. 148-149
Author(s):  
C. Doom

Wolf-Rayet (WR) stars are the descendants of massive stars that have lost their hydrogen rich envelope. Recently more accurate data on WR stars have become available: mass-loss rates (van der Hucht et al. 1986), radii and luminosities (Underhill 1983, Nussbaumer et al. 1982).It may therefore be worthwhile to investigate if combinations of observed parameters shed some light on the structure of the extended stellar wind of WR stars.In many WR stars the photosphere is situated in the stellar wind. We assume that the wind is stationary and isotropic. Further we assume a velocity law v(r)=v∞(1−Rs/r)β where v∞ is the terminal velocity of the wind in km/s, Rs is the radius where the wind acceleration starts and β > 0 is a free parameter. We can then easily compute the level R in the wind where the photosphere is located (de Loore et al. 1982): R is the solution of the equation 6.27 10−9 τat R v∞/ = fβ(Rs/R) where τat is the optical depth at the photosphere (2/3 or 1), (>0) is the mass loss rate in M⊙/yr and fβ > 1 is a slowly varying function (Doom 1987).


1981 ◽  
Vol 59 ◽  
pp. 41-44
Author(s):  
Mario Perinotto ◽  
Nino Panagia

AbstractThe 07 n star HD 217086 which provides the ionization of the H II region S 155 A and is the brightest member of the Cep OB 3 association, has been observed in the ultraviolet with IUE. From an analysis of the UV spectra we determine a terminal velocity of 3560 ± 100 km s-1 and a mass loss rate of . A comparison is made with the stars of similar spectral type.


1987 ◽  
Vol 92 ◽  
pp. 437-439
Author(s):  
C. H. Poe ◽  
D. B. Friend

With their rotating, magnetic, radiation-driven wind model, Friend & MacGregor (1984) found that rapid rotation and an open magnetic field could enhance the mass loss rate (ṁ) and terminal velocity (V∞) in an 0 star wind. The purpose of this paper is to see if this model could help explain the winds from Be stars. The following features of Be star winds need to be explained: 1) Be stars exhibit linear polarization (Coyne & McLean 1982), indicating an enhanced equatorial density. 2) There appears to be enhanced mass loss (at low velocity) in the equatorial plane, from IRAS observations of Waters (1986). 3) The width of the broad Balmer emission lines remains unexplained.


2018 ◽  
Vol 620 ◽  
pp. A150 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. In wind-powered X-ray binaries, the radiatively driven stellar wind from the primary may be inhibited by the X-ray irradiation. This creates the feedback that limits the X-ray luminosity of the compact secondary. Wind inhibition might be weakened by the effect of small-scale wind inhomogeneities (clumping) possibly affecting the limiting X-ray luminosity. Aims. We study the influence of X-ray irradiation on the stellar wind for different radial distributions of clumping. Methods. We calculate hot star wind models with external irradiation and clumping using our global wind code. The models are calculated for different parameters of the binary. We determine the parameters for which the X-ray wind ionization is so strong that it leads to a decrease of the radiative force. This causes a decrease of the wind velocity and even of the mass-loss rate in the case of extreme X-ray irradiation. Results. Clumping weakens the effect of X-ray irradiation because it favours recombination and leads to an increase of the wind mass-loss rate. The best match between the models and observed properties of high-mass X-ray binaries (HMXBs) is derived with radially variable clumping. We describe the influence of X-ray irradiation on the terminal velocity and on the mass-loss rate in a parametric way. The X-ray luminosities predicted within the Bondi-Hoyle-Lyttleton theory agree nicely with observations when accounting for X-ray irradiation. Conclusions. The ionizing feedback regulates the accretion onto the compact companion resulting in a relatively stable X-ray source. The wind-powered accretion model can account for large luminosities in HMXBs only when introducing the ionizing feedback. There are two possible states following from the dependence of X-ray luminosity on the wind terminal velocity and mass-loss rate. One state has low X-ray luminosity and a nearly undisturbed wind, and the second state has high X-ray luminosity and exhibits a strong influence of X-rays on the flow.


2018 ◽  
Vol 14 (S344) ◽  
pp. 208-210
Author(s):  
Jiří Krtička ◽  
Jiří Kubát

AbstractHot star winds are driven by the radiative force due to light absorption in lines of heavier elements. Therefore, the amount of mass lost by the star per unit of time, i.e., the mass-loss rate, is sensitive to metallicity. We provide mass-loss rate predictions for O stars with mass fraction of heavier elements 0.2 <Z/Z⊙ ≤ 1. Our predictions are based on global model atmospheres. The models allow us to predict wind terminal velocity and the mass-loss rate just from basic global stellar parameters. We provide a formula that fits the mass-loss rate predicted by our models as a function of stellar luminosity and metallicity. On average, the mass-loss rate scales with metallicity as (Z/Z⊙)0.59. The predicted mass-loss rates agree with mass-loss rates derived from ultraviolet wind line profiles. At low metallicity, the rotational mixing affects the wind mass-loss rates. We study the influence of magnetic line blanketing.


1979 ◽  
Vol 83 ◽  
pp. 139-142
Author(s):  
P. Persi ◽  
M. Ferrari Toniolo ◽  
G. Spada

We know from Copernicus ultraviolet observations that all O-type stars are losing mass by stellar wind. The ionized expanding circumstellar envelope formed by the stellar wind is emitting through free-free and bound-free radiation processes. This radiation is detectable at the infrared wavelengths where the stellar continuum is negligible. The measurement of the IR excess (defined as the difference between the total flux and the stellar continuum at a given wavelength) and the knowledge of the terminal velocity of the envelope, allow us to derive for OB stars the mass loss rate. From the analysis of our IR observations of two O stars, HDE 226868 and HDE 245770, identified as optical counterpart of X-ray sources, we give an estimate of their mass loss rate. The IR observations were carried out with the Jungfraujoch 76 cm telescope using a GE bolometer with a focal plane chopping system and with the Merate 132 cm telescope using an InSb detector.


2016 ◽  
Vol 12 (S329) ◽  
pp. 401-401
Author(s):  
Alex C. Gormaz-Matamala ◽  
Michel Curé ◽  
Lydia Cidale ◽  
Roberto Venero

AbstractIn the frame of radiation driven wind theory (Castor et al.1975), we present self-consistent hydrodynamical solutions to the line-force parameters (k, α, δ) under LTE conditions. Hydrodynamic models are provided by HydWind (Curé 2004). We evaluate these results with those ones previously found in literature, focusing in different regions of the optical depth to be used to perform the calculations. The values for mass-loss rate and terminal velocity obtained from our calculations are also presented.We also examine the line-force parameters for the case when large changes in ionization throughout the wind occurs (δ-slow solutions, Curé et al.2011).


Sign in / Sign up

Export Citation Format

Share Document