Two Centuries of Solar Polarimetry

2014 ◽  
Vol 10 (S305) ◽  
pp. 2-11
Author(s):  
J. W. Harvey

AbstractIn 1811, François Arago observed the disk of the Sun with his “lunette polariscopique”. From the absence of detectable polarization compared with his laboratory observations of glowing solids, liquids, and flames he concluded that the Sun's visible surface is an incandescent gas. From this beginning, thanks to orders of magnitude technology improvements, a remarkable amount of what we know about the physics of the Sun has continued to flow from solar polarimetry. This short review compares some selected polarimetric discoveries with subsequent recent observations to illustrate the tremendous progress of solar polarimetry during the last two centuries.

2020 ◽  
Author(s):  
Yoichiro Hanaoka ◽  
Yukio Katsukawa ◽  
Satoshi Morita ◽  
Yukiko Kamata ◽  
Noriyoshi Ishizuka

Abstract Polarimetry is a crucial method to investigate solar magnetic elds. From the viewpoint of space weather, the magnetic eld in solar laments, which occasionally erupt and develop into interplanetary ux ropes, is of particular interest. To measure the magnetic eld in laments, high-performance polarimetry in the near-infrared wavelengths employing a high-speed, large-format detector is required; however, so far, this has been difficult to be realized. Thus, the development of a new infrared camera for advanced solar polarimetry has been started, employing a HAWAII-2RG (H2RG) array by Teledyne, which has 2048 2048 pixels, focusing on the wavelengths in the range of 1.0{1.6 m. We solved the problem of the difficult operation of the H2RGs under \fast readout mode" synchronizing with high-speed polarization modulation by introducing a \MACIE" (Markury ASIC Control and Interface Electronics) interface card and new assembly codes provided by Markury Scientic. This enables polarization measurements with high frame-rates, such as 29{117 frames per seconds, using a H2RG. We conducted experimental observations of the Sun and conrmed the high polarimetric performance of the camera.


Author(s):  
V. Archontis ◽  
P. Syntelis

A plethora of solar dynamic events, such as the formation of active regions, the emission of jets and the occurrence of eruptions is often associated with the emergence of magnetic flux from the interior of the Sun to the surface and above. Here, we present a short review on the onset, driving and/or triggering of such events by magnetic flux emergence. We briefly describe some key observational examples, theoretical aspects and numerical simulations, towards revealing the mechanisms that govern solar dynamics and activity related to flux emergence. We show that the combination of important physical processes like shearing and reconnection of magnetic fieldlines in emerging flux regions or at their vicinity can power some of the most dynamic phenomena in the Sun on various temporal and spatial scales. Based on previous and recent observational and numerical studies, we highlight that, in most cases, none of these processes alone can drive and also trigger explosive phenomena releasing considerable amount of energy towards the outer solar atmosphere and space, such as flares, jets and large-scale eruptions (e.g. coronal mass ejections). In addition, one has to take into account the physical properties of the emerging field (e.g. strength, amount of flux, relative orientation to neighbouring and pre-existing magnetic fields, etc.) in order to better understand the exact role of magnetic flux emergence on the onset of solar dynamic events. This article is part of the theme issue ‘Solar eruptions and their space weather impact’.


1968 ◽  
Vol 35 ◽  
pp. 93-107 ◽  
Author(s):  
H. U. Schmidt

The dynamics of the magnetic fields which are imbedded into the non-stationary outer layers of the Sun show many facets of interest to observers and theoreticians alike. In a short review I can only deal with a small number of them and occasionally glance at some others. I hate to call these magnetic fields frozen into a matter which is rather in a boiling state, but the electrical conductivity in these layers is high enough to keep matter and magnetic flux together for rather long times, so that we can discuss the most important questions within the framework of magnetohydrodynamics with infinite conductivity. I will first talk mainly about the layers below the photosphere, where the matter controls the motion of the field, secondly about the intermediate state near the photosphere, where matter and field have comparable energy, and finally about the upper layers where the field controls the material motion.


2009 ◽  
Vol 8 (3) ◽  
pp. 241-242
Author(s):  
Roberto Silvotti

AbstractAmong the many cosmic cataclysms that can influence life, we focus on the impact that the most critical phases of the late-stage stellar evolution may have on planets. To give an example, the red giant expansion of the Sun will probably engulf the inner planets, including perhaps the Earth. Although these studies are far from being able to predict anything concerning life, they are starting to make preliminary predictions about what can happen to planets within a few AU of the star. We present a short review of this field, in particular regarding the first detections of old evolved planets orbiting post-red giant branch stars.


1966 ◽  
Vol 24 ◽  
pp. 40-43
Author(s):  
O. C. Wilson ◽  
A. Skumanich

Evidence previously presented by one of the authors (1) suggests strongly that chromospheric activity decreases with age in main sequence stars. This tentative conclusion rests principally upon a comparison of the members of large clusters (Hyades, Praesepe, Pleiades) with non-cluster objects in the general field, including the Sun. It is at least conceivable, however, that cluster and non-cluster stars might differ in some fundamental fashion which could influence the degree of chromospheric activity, and that the observed differences in chromospheric activity would then be attributable to the circumstances of stellar origin rather than to age.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


1997 ◽  
Vol 161 ◽  
pp. 707-709 ◽  
Author(s):  
Jun Jugaku ◽  
Shiro Nishimura

AbstractWe continued our search for partial (incomplete) Dyson spheres associated with 50 solar-type stars (spectral classes F, G, and K) within 25 pc of the Sun. No candidate objects were found.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2000 ◽  
Vol 179 ◽  
pp. 193-196
Author(s):  
V. I. Makarov ◽  
A. G. Tlatov

AbstractA possible scenario of polar magnetic field reversal of the Sun during the Maunder Minimum (1645–1715) is discussed using data of magnetic field reversals of the Sun for 1880–1991 and the14Ccontent variations in the bi-annual rings of the pine-trees in 1600–1730 yrs.


Sign in / Sign up

Export Citation Format

Share Document